
JAVA Means DURGASIR

77 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

JAVA Means DURGASIR

78 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Multi Threading Enhancements

8.1) ThreadGroup

8.2) ThreadLocal

8.3) java.util.concurrent.locks package
 ->Lock(I)
 ->ReentrantLock(C)

8.4) Thread Pools

8.5) Callable and Future

http://www.durgasoft.com

JAVA Means DURGASIR

79 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

ThreadGroup:
 Based on the Functionality we can Group Threads into a Single Unit which is

Nothing but ThreadGroup i.e. ThreadGroup Represents a Set of Threads.
 In Addition a ThreadGroup can Also contains Other SubThreadGroups.

 ThreadGroup Class Present in java.lang Package and it is the Direct Child Class of

Object.
 ThreadGroup provides a Convenient Way to Perform Common Operation for all

Threads belongs to a Particular Group.
Eg:Stop All Consumer Threads.
 Suspend All Producer Threads.

Constructors:

1) ThreadGroup g = new ThreadGroup(String gname);

 Createsa New ThreadGroup.
 The Parent of this New Group is the ThreadGroup of Currently Running

Thread.

2) ThreadGroup g = new ThreadGroup(ThreadGrouppg, String gname);

 Creates a New ThreadGroup.
 The Parent of this ThreadGroup is the specified ThreadGroup.

Note:
 In Java Every Thread belongs to Some Group.
 Every ThreadGroup is the Child Group of System Group either Directly OR

Indirectly. Hence SystemGroup Acts as Root for all ThreadGroup’s in Java.
 System ThreadGroup Represents System Level Threads Like ReferenceHandler,

SignalDispatcher, Finalizer, AttachListener Etc.

t1 t2 t3 -------------tn

t5 t6 t7

SubThreadGroup
ThreadGroup

http://www.durgasoft.com

JAVA Means DURGASIR

80 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

System

Main ThreadGroup ReferenceHandler SignalDispatcher

Main
Thread
Class

Child
Thread 1

Child
Thread 2

SubThreadGroup

Thread 1 Thread 2 Thread 3

t 1 t2 t3

classThreadGroupDemo {
public static void main(String[] args) {
 System.out.println(Thread.currentThread().getThreadGroup().getName());
 System.out.println(Thread.currentThread().getThreadGroup().getParent().getName());
 ThreadGrouppg = new ThreadGroup("Parent Group");
 System.out.println(pg.getParent().getName());
 ThreadGroup cg = new ThreadGroup(pg, "Child Group");
 System.out.println(cg.getParent().getName());
}
}

main
system
main
Parent Group

http://www.durgasoft.com

JAVA Means DURGASIR

81 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Important Methods of ThreadGroup Class:

1) String getName();Returns Name of the ThreadGroup.

2) intgetMaxPriority();Returns the Maximum Priority of ThreadGroup.

3) void setMaxPriority();
 To Set Maximum Priority of ThreadGroup.
 The Default Maximum Priority is 10.
 Threads in the ThreadGroup that Already have Higher Priority, Not effected

but Newly Added Threads this MaxPriority is Applicable.

Main

System

Parent Group

Child Group

http://www.durgasoft.com

JAVA Means DURGASIR

82 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

4) ThreadGroupgetParent(): Returns Parent Group of Current ThreadGroup.

5) void list(): It Prints Information about ThreadGroup to the Console.

6) intactiveCount(): Returns Number of Active Threads Present in the ThreadGroup.

7) intactiveGroupCount(): It Returns Number of Active ThreadGroups Present in the

Current ThreadGroup.

8) int enumerate(Thread[] t): To Copy All Active Threads of this Group into provided
Thread Array. In this Case SubThreadGroup Threads also will be Considered.

9) int enumerate(ThreadGroup[] g): To Copy All Active SubThreadGroups into

ThreadGroupArray.

classThreadGroupDemo {
 public static void main(String[] args) {
 ThreadGroup g1 = new ThreadGroup("tg");
 Thread t1 = new Thread(g1, "Thread 1");
 Thread t2 = new Thread(g1, "Thread 2");
 g1.setMaxPriority(3);
 Thread t3 = new Thread(g1, "Thread 3");
 System.out.println(t1.getPriority()); 5
 System.out.println(t2.getPriority()); 5
 System.out.println(t3.getPriority()); 3
 }
}

http://www.durgasoft.com

JAVA Means DURGASIR

83 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

10) booleanisDaemon():

11) void setDaemon(boolean b):

12) void interrupt(): To Interrupt All Threads Present in the ThreadGroup.

13) void destroy(): To Destroy ThreadGroup and its SubThreadGroups.

classMyThread extends Thread {
 MyThread(ThreadGroup g, String name) {
 super(g, name);
 }
 public void run() {
 System.out.println("Child Thread");
 try {
 Thread.sleep(2000);
 }
 catch (InterruptedException e) {}
 }
}
classThreadGroupDemo {
 public static void main(String[] args) throws InterruptedException {
 ThreadGrouppg = new ThreadGroup("Parent Group");
 ThreadGroup cg = new ThreadGroup(pg, "Child Group");
 MyThread t1 = new MyThread(pg, "Child Thread 1");
 MyThread t2 = new MyThread(pg, "Child Thread 2");
 t1.start();
 t2.start();
 System.out.println(pg.activeCount());
 System.out.println(pg.activeGroupCount());
 pg.list();
 Thread.sleep(5000);
 System.out.println(pg.activeCount());
 pg.list();
 }
}

2
1
java.lang.ThreadGroup[name=Parent Group,maxpri=10]
Thread[Child Thread 1,5,Parent Group]
Thread[Child Thread 2,5,Parent Group]
java.lang.ThreadGroup[name=Child Group,maxpri=10]
Child Thread
Child Thread
0
java.lang.ThreadGroup[name=Parent Group,maxpri=10]
java.lang.ThreadGroup[name=Child Group,maxpri=10]

http://www.durgasoft.com

JAVA Means DURGASIR

84 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Write a Program to Display All Thread Names belongs to System Group

ThreadLocal:

 ThreadLocalProvides ThreadLocal Variables.
 ThreadLocal Class Maintains Values for Thread Basis.
 Each ThreadLocal Object Maintains a Separate Value Like userID,

transactionIDEtc for Each Thread that Accesses that Object.
 Thread can Access its Local Value, can Manipulates its Value and Even can Remove

its Value.
 In Every Part of the Code which is executed by the Thread we can Access its Local

Variables.
Eg:
 Consider a Servlet which Calls Some Business Methods. we have a Requirement to

generate a Unique transactionID for Each and Every Request and we have to Pass
this transactionID to the Business Methods for Logging Purpose.

 For this Requirement we can Use ThreadLocal to Maintain a Separate
transactionID for Every Request and for Every Thread.

Note:
☀ ThreadLocal Class introduced in 1.2 Version.
☀ ThreadLocal can be associated with Thread Scope.
☀ All the Code which is executed by the Thread has Access to Corresponding

ThreadLocal Variables.

classThreadGroupDemo {
public static void main(String[] args) {
 ThreadGroup system = Thread.currentThread().getThreadGroup().getParent();
 Thread[] t = new Thread[system.activeCount()];
 system.enumerate(t);
 for (Thread t1: t) {
 System.out.println(t1.getName()+"-------"+t1.isDaemon());
 }
}
}

Reference Handler-------true
Finalizer-------true
Signal Dispatcher-------true
Attach Listener-------true
main-------false

http://www.durgasoft.com

JAVA Means DURGASIR

85 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

☀ A Thread can Access its Own Local Variables and can’t Access Other Threads
Local Variables.

☀ Once Thread Entered into Dead State All Local Variables are by Default Eligible for
Garbage Collection.

Constructor:ThreadLocaltl = new ThreadLocal();
Creates a ThreadLocal Variable.

Methods:
1) Object get(); Returns the Value of ThreadLocal Variable associated with Current

Thread.

2) Object initialValue();
 Returns the initialValue of ThreadLocal Variable of Current Thread.
 The Default Implementation of initialValue() Returns null.
 To Customize Our initialValue we have to Override initialValue().

3) void set(Object newValue);To Set a New Value.

4) void remove();

 To Remove the Current Threads Local Variable Value.
 After Remove if we are trying to Access it will be reinitialized Once Again by

invoking its initialValue().
 This Method Newly Added in 1.5 Version.

http://www.durgasoft.com

JAVA Means DURGASIR

86 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

classThreadLocalDemo {
public static void main(String[] args) {
 ThreadLocaltl = new ThreadLocal();
 System.out.println(tl.get()); //null
 tl.set("Durga");
 System.out.println(tl.get()); //Durga
 tl.remove();
 System.out.println(tl.get()); //null
}
}

//Overriding of intialValue()
classThreadLocalDemo {
public static void main(String[] args) {
 ThreadLocaltl = new ThreadLocal() {
 protected Object initialValue() {
 return "abc";
}
 };
 System.out.println(tl.get()); //abc
 tl.set("Durga");
 System.out.println(tl.get()); //Durga
 tl.remove();
 System.out.println(tl.get()); //abc
}
}

classCustomerThread extends Thread {
 static Integer custID = 0;
 private static ThreadLocaltl = new ThreadLocal() {
 protected Integer initialValue() {
 return ++custID;
 }
 };
 CustomerThread(String name) {
 super(name);
 }
 public void run() {

classCustomerThread extends Thread {
 static Integer custID = 0;
 private static ThreadLocaltl = new ThreadLocal() {
 protected Integer initialValue() {
 return ++custID;
 }
 };
 CustomerThread(String name) {
 super(name);
 }
 public void run() {

http://www.durgasoft.com

JAVA Means DURGASIR

87 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

In the Above Program for Every Customer Thread a Separate customerID will be
maintained by ThreadLocal Object.

ThreadLocalVs Inheritance:
 Parent Threads ThreadLocal Variables are by Default Not Available to the Child

Threads.
 If we want to Make Parent Threads Local Variables Available to Child Threads we

should go for InheritableThreadLocal Class.
 It is the Child Class of ThreadLocal Class.
 By Default Child Thread Values are Same as Parent Thread Values but we can

Provide Customized Values for Child Threads by Overriding childValue().

Constructor:InheritableThreadLocalitl = new InheritableThreadLocal();

CustomerThread - 1 Executing with Customer ID:1
CustomerThread - 1 Executing with Customer ID:1
CustomerThread - 1 Executing with Customer ID:1
CustomerThread - 1 Executing with Customer ID:1
CustomerThread - 1 Executing with Customer ID:1

CustomerThread - 2 Executing with Customer ID:2
CustomerThread - 2 Executing with Customer ID:2
CustomerThread - 2 Executing with Customer ID:2
CustomerThread - 2 Executing with Customer ID:2
CustomerThread - 2 Executing with Customer ID:2

CustomerThread - 3 Executing with Customer ID:3
CustomerThread - 3 Executing with Customer ID:3
CustomerThread - 3 Executing with Customer ID:3
CustomerThread - 3 Executing with Customer ID:3
CustomerThread - 3 Executing with Customer ID:3

CustomerThread - 4 Executing with Customer ID:4
CustomerThread - 4 Executing with Customer ID:4
CustomerThread - 4 Executing with Customer ID:4
CustomerThread - 4 Executing with Customer ID:4
CustomerThread - 4 Executing with Customer ID:4

http://www.durgasoft.com

JAVA Means DURGASIR

88 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

InheritableThreadLocal is the Child Class of ThreadLocal and Hence All Methods
Present in ThreadLocal by Default Available to the InheritableThreadLocal.

Method: public Object childValue(Object pvalue);

classParentThread extends Thread {
public static InheritableThreadLocalitl = new InheritableThreadLocal() {
 public Object childValue(Object p) {
 return "cc";
 }
};
public void run() {
 itl.set("pp");
 System.out.println("Parent Thread --"+itl.get());
 ChildThreadct = new ChildThread();
 ct.start();
}
classChildThread extends Thread {
 public void run() {
 System.out.println("Child Thread --"+ParentThread.itl.get());
 }
}
}
classThreadLocalDemo {
 public static void main(String[] args) {
 ParentThreadpt = new ParentThread();
 pt.start();
 }
}

Parent Thread --pp
Child Thread --cc

http://www.durgasoft.com

JAVA Means DURGASIR

89 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Java.util.concurrent.locks package:

Problems with Traditional synchronized Key Word
 If a Thread Releases the Lock then which waiting Thread will get that Lock we are

Not having any Control on this.
 We can’t Specify Maximum waiting Time for a Thread to get Lock so that it will

Wait until getting Lock, which May Effect Performance of the System and Causes
Dead Lock.

 We are Not having any Flexibility to Try for Lock without waiting.
 There is No API to List All Waiting Threads for a Lock.
 The synchronized Key Word Compulsory we have to Define within a Method and it

is Not Possible to Declare Over Multiple Methods.
 To Overcome Above Problems SUN People introduced java.util.concurrent.locks

Package in 1.5 Version.
 It Also Provides Several Enhancements to the Programmer to Provide More Control

on Concurrency.

Lock(I):
 A Lock Object is Similar to Implicit Lock acquired by a Thread to Execute

synchronized Method OR synchronized Block
 Lock Implementations Provide More Extensive Operations than Traditional

Implicit Locks.

Important Methods of Lock Interface
1) void lock();

 It Locks the Lock Object.
 If Lock Object is Already Locked by Other Thread then it will wait until it is

Unlocked.

2) booleantryLock();
 To Acquire the Lock if it is Available.
 If the Lock is Available then Thread Acquires the Lock and Returns true.
 If the Lock Unavailable then this Method Returns false and Continue its

Execution.
 In this Case Thread is Never Blocked.

http://www.durgasoft.com

JAVA Means DURGASIR

90 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

3) boolentryLock(long time, TimeUnit unit);

 To Acquire the Lock if it is Available.
 If the Lock is Unavailable then Thread can Wait until specified Amount of Time.
 Still if the Lock is Unavailable then Thread can Continue its Execution.
Eg: if (l.tryLock(1000, TimeUnit.SECONDS)) {}

TimeUnit:TimeUnit is an enum Present in java.util.concurrent Package.

4) void lockInterruptedly();

Acquired the Lock Unless the Current Thread is Interrupted.
Acquires the Lock if it is Available and Returns Immediately.
If it is Unavailable then the Thread will wait while waiting if it is Interrupted then it
won’t get the Lock.

5) void unlock(); To Release the Lock.

ReentrantLock
 It implements Lock Interface and it is the Direct Child Class of an Object.
 Reentrant Means a Thread can acquires Same Lock Multiple Times without any

Issue.
 Internally ReentrantLock Increments Threads Personal Count whenever we Call

lock() and Decrements Counter whenever we Call unlock() and Lock will be
Released whenever Count Reaches ‘0’.

Constructors:
1) ReentrantLockrl = new ReentrantLock();

Creates an Instance of ReentrantLock.

2) ReentrantLockrl = new ReentrantLock(boolean fairness);
 Creates an Instance of ReentrantLock with the Given Fairness Policy.

if (l.tryLock()) {
Perform Safe Operations
}
else {
 Perform Alternative Operations
}

enumTimeUnit {
 DAYS, HOURS, MINUTES, SECONDS, MILLI SECONDS, MICRO SECONDS, NANO SECONDS;
}

http://www.durgasoft.com

JAVA Means DURGASIR

91 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 If Fairness is true then Longest Waiting Thread can acquired Lock Once it is
Avaiable i.e. if follows First - In First – Out.

 If Fairness is false then we can’t give any Guarantee which Thread will get the
Lock Once it is Available.

Note: If we are Not specifying any Fairness Property then by Default it is Not Fair.

Which of the following 2 Lines are Equal?

Important Methods of ReentrantLock

1) void lock();

2) booleantryLock();

3) booleantryLock(long l, TimeUnit t);

4) void lockInterruptedly();

5) void unlock();

 To Realease the Lock.
 If the Current Thread is Not Owner of the Lock then we will get Runtime

Exception Saying IllegalMonitorStateException.

6) intgetHoldCount(); Returns Number of Holds on this Lock by Current Thread.

7) booleanisHeldByCurrentThread(); Returns true if and Only if Lock is Hold by

Current Thread.

ReentrantLockrl = new ReentrantLock(); √

ReentrantLockrl = new ReentrantLock(true);

ReentrantLockrl = new ReentrantLock(false); √

http://www.durgasoft.com

JAVA Means DURGASIR

92 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

8) intgetQueueLength(); Returns the Number of Threads waiting for the Lock.

9) Collection getQueuedThreads(); Returns a Collection containing Thread Objects

which are waiting to get the Lock.
10) booleanhasQueuedThreads(); Returns true if any Thread waiting to get the Lock.

11) booleanisLocked(); Returns true if the Lock acquired by any Thread.

12) booleanisFair();Returns true if the Lock’s Fairness Set to true.

13) Thread getOwner();Returns the Thread which acquires the Lock.

importjava.util.concurrent.locks.ReentrantLock;
class Test {
 public static void main(String[] args) {
 ReentrantLock l = new ReentrantLock();
 l.lock();

 l.lock();
 System.out.println(l.isLocked()); //true
 System.out.println(l.isHeldByCurrentThread()); //true
 System.out.println(l.getQueueLength()); //0

 l.unlock();
 System.out.println(l.getHoldCount()); //1
 System.out.println(l.isLocked()); //true

 l.unlock();
 System.out.println(l.isLocked()); //false
 System.out.println(l.isFair()); //false
 }
}

http://www.durgasoft.com

JAVA Means DURGASIR

93 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

importjava.util.concurrent.locks.ReentrantLock;
class Display {
ReentrantLock l = new ReentrantLock(true);
public void wish(String name) {
 l.lock(); 1
 for(int i=0; i<5; i++) {
 System.out.println("Good Morning");
 try {
 Thread.sleep(2000);
 }
 catch(InterruptedException e) {}
 System.out.println(name);
 }
 l.unlock(); 2
}
}
classMyThread extends Thread {
 Display d;
 String name;
 MyThread(Display d, String name) {
 this.d = d;
 this.name = name;
 }
 public void run() {
 d.wish(name);
 }
}
classReentrantLockDemo {
public static void main(String[] args) {
 Display d = new Display();
 MyThread t1 = new MyThread(d, "Dhoni");
 MyThread t2 = new MyThread(d, "Yuva Raj");
 MyThread t3 = new MyThread(d, "ViratKohli");
 t1.start();
 t2.start();
 t3.start();
 }
}

Good Morning
Dhoni
Good Morning
Dhoni
Good Morning
Dhoni
Good Morning
Dhoni
Good Morning
Dhoni
Good Morning
Yuva Raj
Good Morning
Yuva Raj
Good Morning
Yuva Raj
Good Morning
Yuva Raj
Good Morning
Yuva Raj
Good Morning
ViratKohli
Good Morning
ViratKohli
Good Morning
ViratKohli
Good Morning
ViratKohli
Good Morning
ViratKohli

http://www.durgasoft.com

JAVA Means DURGASIR

94 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

If we Comment Both Lines 1 and 2 then All Threads will be executed Simultaneously
and Hence we will get Irregular Output.

If we are Not Commenting then the Threads will be executed One by One and Hence we
will get Regular Output

Demo Program To Demonstrate tryLock();

importjava.util.concurrent.locks.ReentrantLock;
classMyThread extends Thread {
staticReentrantLock l = new ReentrantLock();
MyThread(String name) {
 super(name);
}
public void run() {
 if(l.tryLock()) {
SOP(Thread.currentThread().getName()+" Got Lock and Performing Safe Operations");
 try {
 Thread.sleep(2000);
 }
 catch(InterruptedException e) {}
 l.unlock();
 }
 else {
 System.out.println(Thread.currentThread().getName()+" Unable To Get Lock
and Hence Performing Alternative Operations");
 }
 }
}
classReentrantLockDemo {
 public static void main(String args[]) {
 MyThread t1 = new MyThread("First Thread");
 MyThread t2 = new MyThread("Second Thread");
 t1.start();
 t2.start();
 }
}

First Thread Got Lock and Performing Safe Operations
Second Thread Unable To Get Lock and Hence Performing Alternative Operations

http://www.durgasoft.com

JAVA Means DURGASIR

95 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

importjava.util.concurrent.TimeUnit;
importjava.util.concurrent.locks.ReentrantLock;
classMyThread extends Thread {
 staticReentrantLock l = new ReentrantLock();
 MyThread(String name) {
 super(name);
 }
 public void run() {
 do {
 try {
 if(l.tryLock(1000, TimeUnit.MILLISECONDS)) {
 SOP(Thread.currentThread().getName()+"------- Got Lock");
Thread.sleep(5000);
l.unlock();
SOP(Thread.currentThread().getName()+"------- Releases Lock");
break;
 }
 else {
SOP(Thread.currentThread().getName()+"------- Unable To Get Lock And Will Try Again");
 }
 }
 catch(InterruptedException e) {}
 }
 while(true);
 }
}
classReentrantLockDemo {
 public static void main(String args[]) {
 MyThread t1 = new MyThread("First Thread");
 MyThread t2 = new MyThread("Second Thread");
 t1.start();
 t2.start();
 }
}

First Thread------- Got Lock
Second Thread------- Unable To Get Lock And Will Try Again
Second Thread------- Unable To Get Lock And Will Try Again
Second Thread------- Unable To Get Lock And Will Try Again
Second Thread------- Unable To Get Lock And Will Try Again
Second Thread------- Got Lock
First Thread------- Releases Lock
Second Thread------- Releases Lock

http://www.durgasoft.com

JAVA Means DURGASIR

96 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Thread Pools:

 Creating a New Thread for Every Job May Create Performance and Memory

Problems.
 To Overcome this we should go for Thread Pool Concept.
 Thread Pool is a Pool of Already Created Threads Ready to do Our Job.
 Java 1.5 Version Introduces Thread Pool Framework to Implement Thread Pools.
 Thread Pool Framework is Also Known as Executor Framework.
 We can Create a Thread Pool as follows

ExecutorService service = Executors.newFixedThreadPool(3);//Our Choice
 We can Submit a Runnable Job by using submit().

service.submit(job);
 We can ShutdownExecutiorService by using shutdown().

service.shutdown();

importjava.util.concurrent.ExecutorService;
importjava.util.concurrent.Executors;
classPrintJob implements Runnable {
 String name;
 PrintJob(String name) {
 this.name = name;
 }
 public void run() {
 SOP(name+"....Job Started By Thread:" +Thread.currentThread().getName());
 try {
 Thread.sleep(10000);
 }
 catch (InterruptedException e) {}
 SOP(name+"....Job Completed By Thread:" +Thread.currentThread().getName());
 }
}
class ExecutorDemo {
 public static void main(String[] args) {
 PrintJob[] jobs = {
newPrintJob("Durga"),
newPrintJob("Ravi"),
newPrintJob("Nagendra"),
newPrintJob("Pavan"),
newPrintJob("Bhaskar"),
newPrintJob("Varma")
};
 ExecutorService service = Executors.newFixedThreadPool(3);
 for (PrintJob job : jobs) {
 service.submit(job);
 }
 service.shutdown();
 }
}

http://www.durgasoft.com

JAVA Means DURGASIR

97 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

On the Above Program 3 Threads are Responsible to Execute 6 Jobs. So that a Single
Thread can be reused for Multiple Jobs.

Note: Usually we can Use ThreadPool Concept to Implement Servers (Web Servers And
Application Servers).

Durga....Job Started By Thread:pool-1-thread-1
Ravi....Job Started By Thread:pool-1-thread-2
Nagendra....Job Started By Thread:pool-1-thread-3
Ravi....Job Completed By Thread:pool-1-thread-2
Pavan....Job Started By Thread:pool-1-thread-2
Durga....Job Completed By Thread:pool-1-thread-1
Bhaskar....Job Started By Thread:pool-1-thread-1
Nagendra....Job Completed By Thread:pool-1-thread-3
Varma....Job Started By Thread:pool-1-thread-3
Pavan....Job Completed By Thread:pool-1-thread-2
Bhaskar....Job Completed By Thread:pool-1-thread-1
Varma....Job Completed By Thread:pool-1-thread-3

Output

http://www.durgasoft.com

JAVA Means DURGASIR

98 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Callable and Future:

 In the Case of Runnable Job Thread won’t Return anything.
 If a Thread is required to Return Some Result after Execution then we should go for

Callable.
 Callable Interface contains Only One Method public Object call() throws Exception.
 If we Submit a Callable Object to Executor then the Framework Returns an Object

of Type java.util.concurrent.Future
 The Future Object can be Used to Retrieve the Result from Callable Job.

importjava.util.concurrent.Callable;
importjava.util.concurrent.ExecutorService;
importjava.util.concurrent.Executors;
importjava.util.concurrent.Future;

classMyCallable implements Callable {
 intnum;
 MyCallable(intnum) {
 this.num = num;
 }
 public Object call() throws Exception {
 int sum = 0;
 for(int i=0; i<num; i++) {
 sum = sum+i;
 }
 return sum;
 }
}
classCallableFutureDemo {
 public static void main(String args[]) throws Exception {
 MyCallable[] jobs = {
newMyCallable(10),
newMyCallable(20),
newMyCallable(30),
newMyCallable(40),
newMyCallable(50),
newMyCallable(60)
 };
 ExecutorService service = Executors.newFixedThreadPool(3);

http://www.durgasoft.com

JAVA Means DURGASIR

99 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

1) What Is Multi Tasking?

2) What Is Multi ThreadingAnd Explain Its Application Areas?

3) What Is Advantage Of Multi Threading?

4) When Compared With C++ What Is The Advantage In Java With Respect To Multi

Threading?

5) In How Many Ways We Can Define A Thread?

6) Among Extending Thread And Implementing Runnable Which Approach Is

Recommended?

7) Difference Between t.start() And t.run()?

8) Explain About Thread Scheduler?

9) If We Are Not Overriding run() What Will Happen?

10) Is It Possible Overloading Of run()?

11) Is It Possible To Override a start() And What Will Happen?

12) Explain Life Cycle Of A Thread?

FAQ’S

http://www.durgasoft.com

JAVA Means DURGASIR

100 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

13) What Is The Importance Of Thread Class start()?

14) After Starting A Thread If We Try To Restart The Same Thread Once Again What

Will Happen?

15) Explain Thread Class Constructors?

16) How To Get And Set Name Of A Thread?

17) Who Uses Thread Priorities?

18) Default Priority For Main Thread?

19) Once We Create A New Thread What Is Its Priority?

20) How To Get Priority From Thread And Set Priority To A Thread?

21) If We Are Trying To Set Priority Of Thread As 100, What Will Happen?

22) If 2 Threads Having Different Priority Then Which Thread Will Get Chance First

For Execution?

23) If 2 Threads Having Same Priority Then Which Thread Will Get Chance First For

Execution?

24) How We Can Prevent Thread From Execution?

25) What Is yield() And Explain Its Purpose?

http://www.durgasoft.com

JAVA Means DURGASIR

101 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

26) Is Join Is Overloaded?

27) Purpose Of sleep()?

28) What Is synchronized Key Word? Explain Its Advantages And Disadvantages?

29) What Is Object Lock And When It Is Required?

30) What Is A Class Level Lock When It Is Required?

31) While A Thread Executing Any Synchronized Method On The Given Object Is It

Possible To Execute Remaining Synchronized Methods On The Same Object
Simultaneously By Other Thread?

32) Difference Between Synchronized Method And Static Synchronized Method?

33) Advantages Of Synchronized Block Over Synchronized Method?

34) What Is Synchronized Statement?

35) How 2 Threads Will Communicate With Each Other?

36) wait(), notify(), notifyAll() Are Available In Which Class?

37) Why wait(), notify(), notifyAll() Methods Are Defined In Object Instead Of Thread

Class?

38) Without Having The Lock Is It Possible To Call wait()?

39) If A Waiting Thread Gets Notification Then It Will Enter Into Which State?

40) In Which Methods Thread Can Release Lock?

41) Explain wait(), notify() and notifyAll()?

42) Difference Between notify() and notifyAll()?

43) Once A Thread Gives Notification Then Which Waiting Thread Will Get A Chance?

44) How A Thread Can Interrupt Another Thread?

45) What Is Deadlock? Is It Possible To Resolve Deadlock Situation?

46) Which Keyword Causes Deadlock Situation?

47) How We Can Stop A Thread Explicitly?

48) Explain About suspend() And resume()?

http://www.durgasoft.com

JAVA Means DURGASIR

102 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

49) What Is Starvation And Explain Difference Between Deadlock and Starvation?

50) What Is Race Condition?

51) What Is Daemon Thread? Give An Example Purpose Of Daemon Thread?

52) How We Can Check Daemon Nature Of A Thread? Is It Possible To Change

Daemon Nature Of A Thread? Is Main Thread Daemon OR Non-Daemon?

53) Explain About ThreadGroup?

54) What Is ThreadLocal?

http://www.durgasoft.com

JAVA Means DURGASIR

103 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

