

JAVA Means DURGA SIR

1 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

JAVA Means DURGA SIR

2 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

JAVA Means DURGA SIR

3 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

EXCEPTION HANDLING

1. Introduction
2. Runtime stack mechanism
3. Default exception handling in java
4. Exception hierarchy
5. Customized exception handling by try catch
6. Control flow in try catch
7. Methods to print exception information
8. Try with multiple catch blocks
9. Finally
10. Difference between final, finally, finalize
11. Control flow in try catch finally
12. Control flow in nested try catch finally
13. Various possible combinations of try catch finally
14. throw keyword
15. throws keyword
16. Exception handling keywords summary
17. Various possible compile time errors in exception handling
18. Customized exceptions
19. Top-10 exceptions
20. 1.7 Version Enhancements

1. try with resources
2. multi catch block

21. Exception Propagation
22. Rethrowing an Exception

http://www.durgasoft.com

JAVA Means DURGA SIR

4 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Introduction

Exception: An unwanted unexpected event that disturbs normal flow of the program is
called exception.

Example:
SleepingException
TyrePunchuredException
FileNotFoundException ...etc

 It is highly recommended to handle exceptions. The main objective of exception
handling is graceful (normal) termination of the program.

What is the meaning of exception handling?

Exception handling doesn't mean repairing an exception. We have to define alternative
way to continue rest of the program normally. This way of defining alternative is
nothing but exception handling.

Example: Suppose our programming requirement is to read data from remote file
locating at London. At runtime if London file is not available then our program should
not be terminated abnormally.

We have to provide a local file to continue rest of the program normally. This way of
defining alternative is nothing but exception handling.

Example:

try
{
read data from London file
}
catch(FileNotFoundException e)
{
use local file and continue rest of the program normally
}

http://www.durgasoft.com

JAVA Means DURGA SIR

5 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Runtime Stack Mechanism:

For every thread JVM will create a separate stack at the time of Thread creation. All
method calls performed by that thread will be stored in that stack. Each entry in the
stack is called "Activation record" (or) "stack frame".

After completing every method call JVM removes the corresponding entry from the
stack.

After completing all method calls JVM destroys the empty stack and terminates the
program normally.

Example:

class Test
{
public static void main(String[] args){
doStuff();
}
public static void doStuff(){
doMoreStuff();
}
public static void doMoreStuff(){
System.out.println("Hello");
}}

Output:
Hello

Diagram:

http://www.durgasoft.com

JAVA Means DURGA SIR

6 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Default Exception Handling in Java:

1. If an exception raised inside any method then that method is responsible to
create Exception object with the following information.

1. Name of the exception.
2. Description of the exception.
3. Location of the exception.(StackTrace)

2. After creating that Exception object, the method handovers that object to the
JVM.

3. JVM checks whether the method contains any exception handling code or not. If
method won't contain any handling code then JVM terminates that method
abnormally and removes corresponding entry form the stack.

4. JVM identifies the caller method and checks whether the caller method contain
any handling code or not. If the caller method also does not contain handling
code then JVM terminates that caller method also abnormally and removes
corresponding entry from the stack.

5. This process will be continued until main() method and if the main() method also
doesn't contain any exception handling code then JVM terminates main()
method also and removes corresponding entry from the stack.

6. Then JVM handovers the responsibility of exception handling to the default
exception handler.

7. Default exception handler just print exception information to the console in the
following format and terminates the program abnormally.

http://www.durgasoft.com

JAVA Means DURGA SIR

7 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Exception in thread “xxx(main)” Name of exception: description
Location of exception (stack trace)

Example:

class Test
{
public static void main(String[] args){
doStuff();
}
public static void doStuff(){
doMoreStuff();
}
public static void doMoreStuff(){
System.out.println(10/0);
}}
Output:
Exception in thread "main" java.lang.ArithmeticException: / by zero
atTest.doMoreStuff(Test.java:10)
atTest.doStuff(Test.java:7)
atTest.main(Test.java:4)
Diagram:

Exception Hierarchy:

http://www.durgasoft.com

JAVA Means DURGA SIR

8 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Throwable acts as a root for exception hierarchy.
Throwable class contains the following two child classes.

Exception:
Most of the cases exceptions are caused by our program and these are recoverable.

Ex : If FileNotFoundException occurs then we can use local file and we can continue
rest of the program execution normally.

Error:
Most of the cases errors are not caused by our program these are due to lack of system
resources and these are non-recoverable.

Ex :If OutOfMemoryError occurs being a programmer we can't do anything the
program will be terminated abnormally.System Admin or Server Admin is responsible
to raise/increase heap memory.

Checked Vs Unchecked Exceptions:
 The exceptions which are checked by the compiler whether programmer

handling or not, for smooth execution of the program at runtime, are called
checked exceptions.

1. HallTicketMissingException
2. PenNotWorkingException
3. FileNotFoundException

http://www.durgasoft.com

JAVA Means DURGA SIR

9 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 The exceptions which are not checked by the compiler whether programmer
handing or not ,are called unchecked exceptions.

1. BombBlastException
2. ArithmeticException
3. NullPointerException

Note:RuntimeException and its child classes, Error and its child classes are unchecked
and all the remaining are considered as checked exceptions.
Note: Whether exception is checked or unchecked compulsory it should occurs at
runtime only and there is no chance of occurring any exception at compile time.

Fully checked Vs Partially checked :

A checked exception is said to be fully checked if and only if all its child classes are also
checked.
Example:
1) IOException
2) InterruptedException

A checked exception is said to be partially checked if and only if some of its child classes
are unchecked.

Example:
Exception

Note :The only possible partially checked exceptions in java are:

1. Throwable.
2. Exception.

Q: Describe behavior of following exceptions ?

http://www.durgasoft.com

JAVA Means DURGA SIR

10 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

1. RuntimeException-----unchecked
2. Error-----unchecked
3. IOException-----fully checked
4. Exception-----partially checked
5. InterruptedException-----fully checked
6. Throwable------partially checked
7. ArithmeticException ----- unchecked
8. NullPointerException ------ unchecked
9. FileNotFoundException ----- fully checked

http://www.durgasoft.com

JAVA Means DURGA SIR

11 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Diagram:

Customized Exception Handling by using try-catch:

 It is highly recommended to handle exceptions.
 In our program the code which may raise exception is called risky code, we have

to place risky code inside try block and the corresponding handling code inside
catch block.

Example:

try
{
 Risky code
}
catch(Exception e)
{
 Handling code
}

http://www.durgasoft.com

JAVA Means DURGA SIR

12 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Without try catch With try catch

class Test
{
public static void main(String[] args){
System.out.println("statement1");
System.out.println(10/0);
System.out.println("statement3");
}
}
output:
statement1
RE:AE:/by zero
at Test.main()

Abnormal termination.

class Test{
public static void main(String[] args){
System.out.println("statement1");
try{
System.out.println(10/0);
}
catch(ArithmeticException e){
System.out.println(10/2);
}
System.out.println("statement3");
}}
Output:
statement1
5
statement3

Normal termination.

Control flow in try catch:

try{

statement1;
statement2;
statement3;

}
catch(X e) {
 statement4;
}
statement5;

 Case 1:If there is no exception.
1, 2, 3, 5 normal termination.

 Case 2: if an exception raised at statement 2 and corresponding catch block
matched

http://www.durgasoft.com

JAVA Means DURGA SIR

13 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

1, 4, 5 normal termination.

 Case 3: if an exception raised at statement 2 but the corresponding catch block
not matched

1 followed by abnormal termination.

 Case 4:if an exception raised at statement 4 or statement 5 then it's always
abnormal termination of the program.

Note:

1. Within the try block if anywhere an exception raised then rest of the try block
won't be executed even though we handled that exception. Hence we have to
place/take only risk code inside try block and length of the try block should be as
less as possible.

2. If any statement which raises an exception and it is not part of any try block then
it is always abnormal termination of the program.

3. There may be a chance of raising an exception inside catch and finally blocks
also in addition to try block.

Various methods to print exception information:

Throwable class defines the following methods to print exception information to the
console.

printStackTrace():
This method prints exception information in the following format.
Name of the exception: description of exception
Stack trace

toString(): This method prints exception information in the following format.
Name of the exception: description of exception

getMessage(): This method returns only description of the exception.
Description.

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

14 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Note: Default exception handler internally uses printStackTrace() method to print
exception information to the console.

Try with multiple catch blocks:

The way of handling an exception is varied from exception to exception. Hence for every
exception type it is recommended to take a separate catch block. That is try with
multiple catch blocks is possible and recommended to use.

Example:

try
{
.
.
.

try
{
.
.
.
.

http://www.durgasoft.com

JAVA Means DURGA SIR

15 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

.
}
catch(Exception e)
{
 default handler
}

catch(FileNotFoundException e)
{
 use local file
}
catch(ArithmeticException e)
{
 perform these Arithmetic operations
}
catch(SQLException e)
{
 don't use oracle db, use mysqldb
}
catch(Exception e)
{
 default handler
}

This approach is not recommended
because for any type of Exception
we are using the same catch block.

This approach is highly recommended
because for any exception raise
we are defining a separate catch block.

 If try with multiple catch blocks present then order of catch blocks is very
important. It should be from child to parent by mistake if we are taking from
parent to child then we will get Compile time error saying

Example:

Finally block:

class Test
{
public static void main(String[] args)
{
try
{
System.out.println(10/0);
}
catch(Exception e)
{
e.printStackTrace();
}
catch(ArithmeticException e)
{
e.printStackTrace();
}}}
 CE:exception
java.lang.ArithmeticException has
already been caught

class Test
{
public static void
main(String[] args)
{
try
{
System.out.println(10/0);
}
catch(ArithmeticException e)
{
e.printStackTrace();
}
catch(Exception e)
{
e.printStackTrace();
}}}
Output:
Compile successfully.

"exception xxx has already been caught"

http://www.durgasoft.com

JAVA Means DURGA SIR

16 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 It is not recommended to take clean up code inside try block because there is no
guarantee for the execution of every statement inside a try.

 It is not recommended to place clean up code inside catch block because if there
is no exception then catch block won't be executed.

 We require some place to maintain clean up code which should be executed
always irrespective of whether exception raised or not raised and whether
handled or not handled. Such type of best place is nothing but finally block.

 Hence the main objective of finally block is to maintain cleanup code.

Example:

The speciality of finally block is it will be executed always irrespective of whether the
exception raised or not raised and whether handled or not handled.

Case-1: If there is no Exception:

class Test
{

public static void main(String[] args)
{
try
{
System.out.println("try block executed");
}
catch(ArithmeticException e)
{
System.out.println("catch block executed");
}
finally
{
System.out.println("finally block executed");

}
}
}
Output:
try block executed
Finally block executed

try
{
risky code
}
catch(x e)
{
handling code
}
finally
{
cleanup code
}

http://www.durgasoft.com

JAVA Means DURGA SIR

17 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Case-2: If an exception raised but the corresponding catch
block matched:

class Test
{

public static void main(String[] args)
{
try
{
System.out.println("try block executed");
System.out.println(10/0);

}
catch(ArithmeticException e)
{
System.out.println("catch block executed");
}
finally
{
System.out.println("finally block executed");

}
}
}
Output:
Try block executed
Catch block executed
Finally block executed

Case-3: If an exception raised but the corresponding catch
block not matched:
class Test
{

public static void main(String[] args)
{
try
{
System.out.println("try block executed");
System.out.println(10/0);

}
catch(NullPointerException e)
{
System.out.println("catch block executed");
}
finally

http://www.durgasoft.com

JAVA Means DURGA SIR

18 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

{
System.out.println("finally block executed");

}
}
}
Output:
Try block executed
Finally block executed
Exception in thread "main" java.lang.ArithmeticException: / by zero
atTest.main(Test.java:8)

return Vs finally:

Even though return statement present in try or catch blocks first finally will be executed
and after that only return statement will be considered. i.efinally block dominates
return statement.
Example:

class Test
{
public static void main(String[] args)
{

try
{
System.out.println("try block executed");
return;
}
catch(ArithmeticException e)
{
System.out.println("catch block executed");
}
finally
{
System.out.println("finally block executed");

}
}}

http://www.durgasoft.com

JAVA Means DURGA SIR

19 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Output:
try block executed
Finally block executed

If return statement present try, catch and finally blocks then finally block return
statement will be considered.
Example:

class Test
{
public static void main(String[] args)
{
System.out.println(m1());
}
public static intm1(){

try
{
System.out.println(10/0);
return 777;
}
catch(ArithmeticException e)
{
return 888;
}
finally{
return 999;

}
}}
Output:
999

finally vs System.exit(0):
==========================
There is only one situation where the finally block won't be executed is whenever we are
using System.exit(0) method.
When ever we are using System.exit(0) then JVM itself will be shutdown , in this case
finally block won't be executed.

i.e., System.exit(0) dominates finally block.

Example:
class Test
{
public static void main(String[] args)

http://www.durgasoft.com

JAVA Means DURGA SIR

20 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

{
try
{
System.out.println("try");
System.exit(0);
}
catch(ArithmeticException e)
{
System.out.println("catch block executed");
}
finally
{
System.out.println("finally block executed");

}
}}
Output:
try

Note :

1. This argument acts as status code. Insteadof zero, we can take any integer value
2. zero means normal termination , non-zero means abnormal termination
3. This status code internally used by JVM, whether it is zero or non-zero there is no
change in the result and effect is same wrt program.

Difference between final, finally, and finalize:

final:

 final is the modifier applicable for classes, methods and variables.
 If a class declared as the final then child class creation is not possible.
 If a method declared as the final then overriding of that method is not possible.
 If a variable declared as the final then reassignment is not possible.

finally:

 finally is the block always associated with try-catch to maintain clean up code
which should be executed always irrespective of whether exception raised or not
raised and whether handled or not handled.

finalize:

System.exit(0);

http://www.durgasoft.com

JAVA Means DURGA SIR

21 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 finalize is a method, always invoked by Garbage Collector just before destroying
an object to perform cleanup activities.

Note:

1. finally block meant for cleanup activities related to try block where as finalize()
method meant for cleanup activities related to object.

2. To maintain clean up code finally block is recommended over finalize() method
because we can't expect exact behavior of GC.

Control flow in try catch finally:

Example:

 Case 1: If there is no exception. 1, 2, 3, 5, 6 normal termination.
 Case 2: if an exception raised at statement 2 and corresponding catch block

matched. 1,4,5,6 normal terminations.
 Case 3: if an exception raised at statement 2 and corresponding catch block is

not matched. 1,5 abnormal termination.

try
{
Stmt 1;
 Stmt-2;
 Stmt-3;
}
catch(Exception e)
{
 Stmt-4;
}
finally
{
 stmt-5;
}
Stmt-6;

http://www.durgasoft.com

JAVA Means DURGA SIR

22 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 Case 4: if an exception raised at statement 4 then it's always abnormal
termination but before the finally block will be executed.

 Case 5: if an exception raised at statement 5 or statement 6 its always abnormal
termination.

Control flow in Nested try-catch-finally:

 Case 1:if there is no exception. 1, 2, 3, 4, 5, 6, 8, 9, 11, 12 normal termination.
 Case 2: if an exception raised at statement 2 and corresponding catch block matched

1,10,11,12 normal terminations.
 Case 3: if an exception raised at statement 2 and corresponding catch block is not

matched 1, 11 abnormal termination.

try
{
stmt-1;
stmt-2;
stmt-3;
try
{
stmt-4;
stmt-5;
stmt-6;
}
catch (X e)
{
stmt-7;
}
finally
{
stmt-8;
}
stmt-9;
}
catch (Y e)
{
stmt-10;
}
finally
{
stmt-11;
}
stmt-12;

http://www.durgasoft.com

JAVA Means DURGA SIR

23 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 Case 4: if an exception raised at statement 5 and corresponding inner catch has
matched 1, 2, 3, 4, 7, 8, 9, 11, 12 normal termination.

 Case 5: if an exception raised at statement 5 and inner catch has not matched but
outer catch block has matched. 1, 2, 3, 4, 8, 10, 11, 12 normal termination.

 Case 6: if an exception raised at statement 5 and both inner and outer catch blocks
are not matched. 1, 2, 3, 4, 8, 11 abnormal termination.

 Case 7: if an exception raised at statement 7 and the corresponding catch block
matched 1, 2, 3, 4, 5, 6, 8, 10, 11, 12 normal termination.

 Case 8: if an exception raised at statement 7 and the corresponding catch block not
matched 1, 2, 3, 4, 5, 6, 8, 11 abnormal terminations.

 Case 9:if an exception raised at statement 8 and the corresponding catch block has
matched 1, 2, 3, 4, 5, 6, 7, 10, 11,12 normal termination.

 Case 10: if an exception raised at statement 8 and the corresponding catch block not
matched 1, 2, 3, 4, 5, 6, 7, 11 abnormal terminations.

 Case 11: if an exception raised at statement 9 and corresponding catch block
matched 1, 2, 3, 4, 5, 6, 7, 8,10,11,12 normal termination.

 Case 12: if an exception raised at statement 9 and corresponding catch block not
matched 1, 2, 3, 4, 5, 6, 7, 8, 11 abnormal termination.

 Case 13: if an exception raised at statement 10 is always abnormal termination but
before that finally block 11 will be executed.

 Case 14: if an exception raised at statement 11 or 12 is always abnormal
termination.

Note:

1.if we are not entering into the try block then the finally block won't be executed. Once
we entered into the try block without executing finally block we can't come out.

2. We can take try-catch inside try i.e., nested try-catch is possible
3. The most specific exceptions can be handled by using inner try-catch and generalized
exceptions can be handle by using outer try-catch.

Example:
class Test
{
public static void main(String[] args){

try{
System.out.println(10/0);
}
catch(ArithmeticException e)
{
System.out.println(10/0);
}
finally{
String s=null;
System.out.println(s.length());
}

}}

output :
RE:NullPointerException

http://www.durgasoft.com

JAVA Means DURGA SIR

24 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Note: Default exception handler can handle only one exception at a time and that is the
most recently raised exception.

Various possible combinations of try catch finally:

1. Whenever we are writing try block compulsory we should write either catch or
finally. i.e., try without catch or finally is invalid.

2. Whenever we are writing catch block compulsory we should write try.
i.e., catch without try is invalid.

3. Whenever we are writing finally block compulsory we should write try.
i.e., finally without try is invalid.

4. In try-catch-finally order is important.
5. With in the try-catch -finally blocks we can take try-catch-finally.

i.e., nesting of try-catch-finally is possible.
6. For try-catch-finally blocks curly braces are mandatory.

finally {} //CE: 'finally' without 'try'

try {} //CE: 'try' without 'catch', 'finally' or resource declarations
System.out.println("Hello");
catch {} //CE: 'catch' without 'try'

try {}
catch (X e) {}
System.out.println("Hello");
catch (Y e) {} //CE: 'catch' without 'try'

try {}
catch (X e) {}

try {}
catch (X e) {}
catch (Y e) {}

try {}
catch (X e) {}
catch (X e) {} //CE:exception ArithmeticException has already been caught

try {}
catch (X e) {}
finally {}

try {}
finally {}

try {} //CE: 'try' without 'catch', 'finally' or resource declarations

catch (X e) {} //CE: 'catch' without 'try'

✔

✔

✘

✔

✔

✘

✘

✘

✘

http://www.durgasoft.com

JAVA Means DURGA SIR

25 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

try {}
catch (X e) {}
System.out.println("Hello");
finally {} //CE: 'finally' without 'try'

try {}
finally {}
catch (X e) {} //CE: 'catch' without 'try'

try {}
catch (X e) {}
try {}
finally {}

try {}
catch (X e) {}
finally {}
finally {} //CE: 'finally' without 'try'

try {}
catch (X e) {
try {}
catch (Y e1) {}
}

try {}
catch (X e) {}
finally {
try {}
catch (Y e1) {}
finally {}
}

✘

✘

✘

✘

✔

✔

✔

http://www.durgasoft.com

JAVA Means DURGA SIR

26 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

throw statement:

try {
try {} //CE: 'try' without 'catch', 'finally' or resource declarations
}
catch (X e) {}

try //CE: '{' expected
System.out.println("Hello");
catch (X e1) {} //CE: 'catch' without 'try'

try {}
catch (X e) //CE:'{' expected
System.out.println("Hello");

try {}
catch (NullPointerException e1) {}
finally //CE: '{' expected
System.out.println("Hello");

✘

✘

✘

✘

http://www.durgasoft.com

JAVA Means DURGA SIR

27 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Sometimes we can create Exception object explicitly and we can hand over to the JVM
manually by using throw keyword.

Example:

The result of following 2 programs is exactly same.

class Test
{
public static void main(String[] args){
System.out.println(10/0);
}}
In this case creation of ArithmeticException
object and handover to the jvm will be
performed automatically by the main() method.

class Test
{
public static void main(String[]
args){
throw new ArithmeticException("/
by zero");
}}
In this case we are creating exception
object explicitly and handover to the
JVM manually.

Note: In general we can use throw keyword for customized exceptions but not for
predefined exceptions.

Case 1:

If e refers null then we will get NullPointerException.

throw e;

http://www.durgasoft.com

JAVA Means DURGA SIR

28 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:
class Test3
{
static ArithmeticException e=new

ArithmeticException();
public static void main(String[]
args){
throw e;
}
}
Output:
Runtime exception: Exception in thread
"main"

java.lang.ArithmeticException

class Test3
{
static ArithmeticException e;
public static void main(String[]
args){
throw e;
}
}
Output:
Exception in thread "main"
 java.lang.NullPointerException
 at Test3.main(Test3.java:5)

Case 2:
After throw statement we can't take any statement directly otherwise we will get
compile time error saying unreachable statement.

Example:
class Test3 class Test3

http://www.durgasoft.com

JAVA Means DURGA SIR

29 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

{
public static void main(String[]
args){
System.out.println(10/0);
System.out.println("hello");
}
}
Output:
Runtime error: Exception in thread
"main"
 java.lang.ArithmeticException: / by
zero
 at Test3.main(Test3.java:4)

{
public static void main(String[]
args){
throw new ArithmeticException("/ by
zero");
System.out.println("hello");
}
}
Output:
Compile time error.
Test3.java:5: unreachable statement
System.out.println("hello");

Case 3:
We can use throw keyword only for Throwable types otherwise we will get compile time
error saying incomputable types.

Example:
class Test3
{
public static void main(String[]
args){
throw new Test3();
}
}Output:
Compile time error.
Test3.java:4: incompatible types
found : Test3
required: java.lang.Throwable
throw new Test3();

class Test3 extends RuntimeException
{
public static void main(String[] args){
throw new Test3();
}
}
Output:
Runtime error: Exception in thread
"main" Test3
 at Test3.main(Test3.java:4)

Throws statement:

In our program if there is any chance of raising checked exception then compulsory we
should handle either by try catch or by throws keyword otherwise the code won't
compile.

http://www.durgasoft.com

JAVA Means DURGA SIR

30 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

import java.io.*;
class Test3
{
public static void main(String[] args){
PrinterWriter out=new PrintWriter("abc.txt");
out.println("hello");
}
}

CE :
Unreported exception java.io.FileNotFoundException; must be caught or
declared to be thrown.

Example:
class Test3
{
public static void main(String[] args){
 Thread.sleep(5000);
}
}

Unreported exception java.lang.InterruptedException; must be caught or
declared to be thrown.

We can handle this compile time error by using the following 2 ways.

Example:
By using try catch By using throws keyword

class Test3
{
public static void
main(String[] args){
try{
Thread.sleep(5000);
}
catch(InterruptedException
e){}
}
}
Output:
Compile and running
successfully

We can use throws keyword to delegate the
responsibility of exception handling to the caller
method. Then caller method is responsible to handle
that exception.
class Test3
{
public static void main(String[] args)throws

InterruptedException{
Thread.sleep(5000);
}
}
Output:
Compile and running successfully

http://www.durgasoft.com

JAVA Means DURGA SIR

31 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Note :

 Hence the main objective of "throws" keyword is to delegate the responsibility of
exception handling to the caller method.

 "throws" keyword required only checked exceptions. Usage of throws for
unchecked exception there is no use.

 "throws" keyword required only to convince complier. Usage of throws keyword
doesn't prevent abnormal termination of the program.

Hence recommended to use try-catch over throws keyword.

Example:

class Test
{
public static void main(String[] args)throws InterruptedException{
doStuff();
}
public static void doStuff()throws InterruptedException{
doMoreStuff();
}
public static void doMoreStuff()throws InterruptedException{
Thread.sleep(5000);
}
}

Output:
Compile and running successfully.

In the above program if we are removing at least one throws keyword then the program
won't compile.

http://www.durgasoft.com

JAVA Means DURGA SIR

32 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Case 1:
we can use throws keyword only for Throwable types otherwise we will get compile time
error saying incompatible types.

Example:
class Test3{
public static void main(String[]
args)
 throws Test3
{}
}
Output:
Compile time error
Test3.java:2: incompatible types
found : Test3
required: java.lang.Throwable
public static void main(String[]
args)
 throws
Test3

class Test3 extends RuntimeException{
public static void main(String[]
args)
 throws
Test3
{}
}
Output:
Compile and running successfully.

Case 2:Example:
class Test3{
public static void main(String[]
args){
throw new Exception();
}
}
Output:
Compile time error.
Test3.java:3: unreported exception
 java.lang.Exception;
must be caught or declared to be
thrown

class Test3{
public static void main(String[]
args){
throw new Error();
}
}
Output:
Runtime error
Exception in thread "main"
java.lang.Error
 at Test3.main(Test3.java:3)

Case 3:

http://www.durgasoft.com

JAVA Means DURGA SIR

33 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

In our program with in the try block, if there is no chance of rising an exception then we
can't right catch block for that exception otherwise we will get compile time error
sayingexception XXX is never thrown in body of corresponding try statement. But this
rule is applicable only for fully checked exception.

Example:

Case 4:
We can use throws keyword only for constructors and methods but not for classes.

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

34 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Exception handling keywords summary:

1. try: To maintain risky code.
2. catch: To maintain handling code.
3. finally: To maintain cleanup code.
4. throw: To handover our created exception object to the JVM manually.
5. throws: To delegate responsibility of exception handling to the caller method.

Various possible compile time errors in exception handling:

1. Exception XXX has already been caught.
2. Unreported exception XXX must be caught or declared to be thrown.
3. Exception XXX is never thrown in body of corresponding try statement.
4. Try without catch or finally.
5. Catch without try.
6. Finally without try.
7. Incompatible types.
 found:Test

 requried:java.lang.Throwable;

http://www.durgasoft.com

JAVA Means DURGA SIR

35 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

8. Unreachable statement.

Customized Exceptions (User defined Exceptions):

Sometimes we can create our own exception to meet our programming requirements.
Such type of exceptions are called customized exceptions (user defined exceptions).

Example:

1. InSufficientFundsException
2. TooYoungException
3. TooOldException

Program:
class TooYoungException extends RuntimeException
{
TooYoungException(String s)
{
super(s);
}
}
class TooOldException extends RuntimeException
{
TooOldException(String s)
{
super(s);
}
}
class CustomizedExceptionDemo
{
public static void main(String[] args){
int age=Integer.parseInt(args[0]);
if(age>60)
{
throw new TooYoungException("please wait some more time.... u will get best
match");
}
else if(age<18)
{
throw new TooOldException("u r age already crossed....no chance of getting
married");
}
else
{
System.out.println("you will get match details soon by e-mail");
}}}

Output:

1)E:\scjp>java CustomizedExceptionDemo 61
Exception in thread "main" TooYoungException:
please wait some more time.... u will get best match
at CustomizedExceptionDemo.main(CustomizedExceptionDemo.java:21)

http://www.durgasoft.com

JAVA Means DURGA SIR

36 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

2)E:\scjp>java CustomizedExceptionDemo 27
You will get match details soon by e-mail

3)E:\scjp>java CustomizedExceptionDemo 9
Exception in thread "main" TooOldException:
u r age already crossed....no chance of getting married
at CustomizedExceptionDemo.main(CustomizedExceptionDemo.java:25)

Note: It is highly recommended to maintain our customized exceptions as unchecked by
extending RuntimeException.
We can catch any Throwable type including Errors also.

Example:

Top-10 Exceptions:

Based on the person who is raising exception, all exceptions are divided into two types.

They are:
1) JVM Exceptions:
2) Programmatic exceptions:

JVM Exceptions:

http://www.durgasoft.com

JAVA Means DURGA SIR

37 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 The exceptions which are raised automatically by the jvm whenever a particular event
occurs, are called JVM Exceptions.
Example:
1) ArrayIndexOutOfBoundsException(AIOOBE)
2) NullPointerException (NPE).

Programmatic Exceptions:

The exceptions which are raised explicitly by the programmer (or) by the API developer
are called programmatic exceptions.
Example: 1) IllegalArgumentException(IAE).

Top 10 Exceptions :

1. ArrayIndexOutOfBoundsException:
It is the child class of RuntimeException and hence it is unchecked. Raised
automatically by the JVM whenever we are trying to access array element with
out of range index. Example:

class Test{
public static void main(String[] args){
int[] x=new int[10];
System.out.println(x[0]);//valid
System.out.println(x[100]);//AIOOBE
System.out.println(x[-100]);//AIOOBE
}
}

2. NullPointerException:

It is the child class of RuntimeException and hence it is unchecked. Raised
automatically by the JVM, whenever we are trying to call any method on null.

Example:
class Test{
public static void main(String[] args){
String s=null;
System.out.println(s.length()); //R.E: NullPointerException
}
}

3. StackOverFlowError:
It is the child class of Error and hence it is unchecked. Whenever we are trying
to invoke recursive method call JVM will raise StackOverFloeError
automatically.

Example:
class Test
{
public static void methodOne()
{

http://www.durgasoft.com

JAVA Means DURGA SIR

38 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

methodTwo();
}
public static void methodTwo()
{
methodOne();
}
public static void main(String[] args)
{
methodOne();
}
}
Output:
Run time error: StackOverFloeError

4. NoClassDefFoundError:
It is the child class of Error and hence it is unchecked. JVM will raise this error
automatically whenever it is unable to find required .class file. Example: java
Test If Test.class is not available. Then we will get NoClassDefFound error.

5. ClassCastException:
It is the child class of RuntimeException and hence it is unchecked. Raised
automatically by the JVM whenever we are trying to type cast parent object to
child type.

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

39 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

6. ExceptionInInitializerError:
It is the child class of Error and it is unchecked. Raised automatically by the
JVM, if any exception occurs while performing static variable initialization and
static block execution.

Example 1:
class Test{
static int i=10/0;
}

Output:

Runtime exception:
 Exception in thread "main" java.lang.ExceptionInInitializerError

Example 2:
class Test{
static {
String s=null;
System.out.println(s.length());
}}
Output:
Runtime exception:
Exception in thread "main" java.lang.ExceptionInInitializerError

7. IllegalArgumentException:

It is the child class of RuntimeException and hence it is unchecked. Raised
explicitly by the programmer (or) by the API developer to indicate that a method
has been invoked with inappropriate argument.

Example:
class Test{
public static void main(String[] args){
Thread t=new Thread();
t.setPriority(10);//valid
t.setPriority(100);//invalid
}}

http://www.durgasoft.com

JAVA Means DURGA SIR

40 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Output:
Runtime exception
Exception in thread "main" java.lang.IllegalArgumentException.

8. NumberFormatException:

It is the child class of IllegalArgumentException and hence is unchecked. Raised
explicitly by the programmer or by the API developer to indicate that we are
attempting to convert string to the number. But the string is not properly
formatted.

Example:
class Test{
public static void main(String[] args){
int i=Integer.parseInt("10");
int j=Integer.parseInt("ten");
}}
Output:
Runtime Exception
Exception in thread "main" java.lang.NumberFormatException: For input
string: "ten"

9. IllegalStateException:

It is the child class of RuntimeException and hence it is unchecked. Raised
explicitly by the programmer or by the API developer to indicate that a method
has been invoked at inappropriate time.

Example:

Once session expires we can't call any method on the session object otherwise we
will get IllegalStateException

HttpSession session=req.getSession();
System.out.println(session.getId());
session.invalidate();
System.out.println(session.getId()); // illgalstateException

http://www.durgasoft.com

JAVA Means DURGA SIR

41 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

10. AssertionError:

It is the child class of Error and hence it is unchecked. Raised explicitly by the
programmer or by API developer to indicate that Assert statement fails.

Example:
assert(false);

Exception/Error Raised by
1. AIOOBE
2. NPE(NullPointerException)
3. StackOverFlowError
4. NoClassDefFoundError
5. CCE(ClassCastException)
6. ExceptionInInitializerError

Raised automatically by JVM(JVM
Exceptions)

1. IAE(IllegalArgumentException)
2. NFE(NumberFormatException)
3. ISE(IllegalStateException)
4. AE(AssertionError)

Raised explicitly either by programmer or
by API developer (Programatic Exceptions).

1.7 Version Enhansements :

As part of 1.7 version enhancements in Exception Handling the following 2 concepts
introduced

http://www.durgasoft.com

JAVA Means DURGA SIR

42 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

1. try with resources
2. multi catch block

1.try with resources

Untill 1.6 version it is highly recommended to write finally block to close all resources
which are open as part of try block.

BufferedReader br=null;
try{
br=new BufferedReader(new FileReader("abc.txt"));
 //use br based on our requirements
 }
catch(IOException e) {
 // handling code
}
finally {
 if(br != null)
 br.close();
}

problems in this approach :

 Compulsory programmer is required to close all opened resources with increases
the complexity of the programming

 Compulsory we should write finally block explicitly which increases length of the
code and reviews readability.

To overcome these problems Sun People introduced "try with resources" in 1.7
version.

The main advantage of "try with resources" is

the resources which are opened as part of try block will be closed automatically
Once the control reaches end of the try block either normally or abnormally and hence
we are not required to close explicitly so that the complexity of programming will be
reduced.It is not required to write finally block explicitly and hence length of the code
will be reduced and readability will be improved.

try(BufferedReader br=new BufferedReader(new FileReader("abc.txt")))
{

use be based on our requirement, br will be closed automatically ,
Onec control reaches end of try either normally
or abnormally and we are not required to close explicitly

 }
catch(IOException e) {
 // handling code
}

Conclusions:

http://www.durgasoft.com

JAVA Means DURGA SIR

43 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

1. We can declare any no of resources but all these resources should be seperated with
;(semicolon)

try(R1 ; R2 ; R3)
{

}

2. All resources should be AutoCloseable resources. A resource is said to be auto
closable if and only if the corresponding class implements the java.lang.AutoCloseable
interface either directly or indirectly.
 All database related, network related and file io related resources already
implemented AutoCloseable interface. Being a programmer we should aware and we
are not required to do anything extra.

3. All resource reference variables are implicitly final and hence we can't perform
reassignment with in the try block.

try(BufferedReader br=new BufferedReader(new FileReader("abc.txt"))) ;
{
 br=new BufferedReader(new FileReader("abc.txt"));
 }

output :
CE : Can't reassign a value to final variable br

4.Untill 1.6 version try should be followed by either catch or finally but 1.7 version we
can take only try with resource without catch or finally

try(R)
{ //valid
}

http://www.durgasoft.com

JAVA Means DURGA SIR

44 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

5.The main advantage of "try with resources" is finally block will become dummy
because we are not required to close resources of explicitly.

Multi catch block :

Until 1.6 version ,Eventhough Multiple Exceptions having same handling code we have
to write a separate catch block for every exceptions, it increases length of the code and
reviews readability
try{

 }
catch(ArithmeticException e) {
 e.printStackTrace();
}
catch(NullPointerException e) {
 e.printStackTrace();
}
catch(ClassCastException e) {
 System.out.println(e.getMessage());
}
catch(IOException e) {
 System.out.println(e.getMessage());
}
To overcome this problem Sun People introduced "Multi catch block" concept in 1.7
version.

http://www.durgasoft.com

JAVA Means DURGA SIR

45 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

The main advantage of multi catch block is we can write a single catch block , which can
handle multiple different exceptions
try{

 }
catch(ArithmeticException | NullPointerException e) {
 e.printStackTrace();
}
catch(ClassCastException | IOException e) {
 System.out.println(e.getMessage());
}
In multi catch block, there should not be any relation between Exception types(either
child to parent Or parent to child Or same type , otherwise we will get Compile time
error)

Example:

Exception Propagation :

http://www.durgasoft.com

JAVA Means DURGA SIR

46 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

With in a method if an exception raised and if that method doesn't handle that
exception, then Exception object will be propagated to the caller then caller method is
responsible to handle that exceptions. This process is called Exception Propagation.

Rethrowing an Exception :

To convert the one exception type to another exception type , we can use rethrowing
exception concept.
class Test
{
 public static void main(String[] args){
 try {
 System.out.println(10/0);
 }
 catch(ArithmeticException e) {
 throw new NullPointerException();
 }
 }
}
output:
RE:NPE

http://www.durgasoft.com

JAVA Means DURGA SIR

47 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

