
JAVA Means DURGA SIR

183 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

JAVA Means DURGA SIR

184 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Object Oriented Programming (OOPS)
Agenda:

1. Data Hiding
2. Abstraction
3. Encapsulation
4. Tightly Encapsulated Class
5. IS-A Relationship(Inheritance)

o Multiple inheritance
o Cyclic inheritance

6. HAS-A Relationship
o Composition
o Aggregation

7. Method Signature
8. Polymorphism

o Overloading
 Automatic promotion in overloading

o Overriding
 Rules for overriding
 Checked Vs Un-checked Exceptions
 Overriding with respect to static methods
 Overriding with respect to Var-arg methods
 Overriding with respect to variables
 Differences between overloading and overriding ?

o Method Hiding
9. Static Control Flow

o Static control flow parent to child relationship
o Static block

10. Instance Control Flow
o Instance control flow in Parent to Child relationship

11. Constructors
o Constructor Vs instance block
o Rules to write constructors
o Default constructor
o Prototype of default constructor
o super() vs this():
o Overloaded constructors
o Recursive functions

12. Coupling
13. Cohesion
14. Object Type Casting

o Compile time checking
o Runtime checking

 Difference between ArrayList l=new ArrayList() & List l=new ArrayList() ?
 In how many ways get an object in java ?

http://www.durgasoft.com

JAVA Means DURGA SIR

185 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 Singleton classes
 Factory method

Data Hiding :
 Our internal data should not go out directly that is outside person can't access

our internal data directly.
 By using private modifier we can implement data hiding.

Example:
class Account {
 private double balance;
;
;
}

After providing proper username and password only , we can access our Account
information.

The main advantage of data hiding is security.
Note: recommended modifier for data members is private.

http://www.durgasoft.com

JAVA Means DURGA SIR

186 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Abstraction :
 Hide internal implementation and just highlight the set of services, is called

abstraction.
 By using abstract classes and interfaces we can implement abstraction.

Example :

By using ATM GUI screen bank people are highlighting the set of services what they
are offering without highlighting internal implementation.

The main advantages of Abstraction are:

1. We can achieve security as we are not highlighting our internal
implementation.(i.e., outside person doesn't aware our internal implementation.)

2. Enhancement will become very easy because without effecting end user we can
able to perform any type of changes in our internal system.

3. It provides more flexibility to the end user to use system very easily.
4. It improves maintainability of the application.
5. It improves modularity of the application.
6. It improves easyness to use our system.

By using interfaces (GUI screens) we can implement abstraction

Encapsulation :
 Binding of data and corresponding methods into a single unit is called

Encapsulation .
 If any java class follows data hiding and abstraction such type of class is said to

be encapsulated class.

Encapsulation=Datahiding+Abstraction
Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

187 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Every data member should be declared as private and for every member we have to
maintain getter & Setter methods.

The main advantages of encapsulation are :

1. We can achieve security.
2. Enhancement will become very easy.
3. It improves maintainability and modularity of the application.
4. It provides flexibility to the user to use system very easily.

The main disadvantage of encapsulation is it increases length of the code and slows
down execution.

http://www.durgasoft.com

JAVA Means DURGA SIR

188 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Tightly encapsulated class :
A class is said to be tightly encapsulated if and only if every variable of that class
declared as private whether the variable has getter and setter methods are not , and
whether these methods declared as public or not, these checkings are not required to
perform.

Example:
class Account {
 private double balance;
 public double getBalance() {
 return balance;
 }
}
Which of the following classes are tightly encapsulated?

Which of the following classes are tightly encapsulated?
class A {
 int x=10; //not
}
class B extends A {
 private int y=20; //not
}
class C extends B {
 private int z=30; //not
}
Note: if the parent class is not tightly encapsulated then no child class is tightly
encapsulated.

http://www.durgasoft.com

JAVA Means DURGA SIR

189 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

IS-A Relationship(inheritance) :
1. Also known as inheritance.
2. By using "extends" keywords we can implement IS-A relationship.
3. The main advantage of IS-A relationship is reusability.

Example:
class Parent {
 public void methodOne(){ }
}
class Child extends Parent {
 public void methodTwo() { }
}

http://www.durgasoft.com

JAVA Means DURGA SIR

190 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Conclusion :

1. Whatever the parent has by default available to the child but whatever the child
has by default not available to the parent. Hence on the child reference we can
call both parent and child class methods. But on the parent reference we can call
only methods available in the parent class and we can't call child specific
methods.

2. Parent class reference can be used to hold child class object but by using that
reference we can call only methods available in parent class and child specific
methods we can't call.

3. Child class reference cannot be used to hold parent class object.

Example:

The common methods which are required for housing loan, vehicle loan, personal loan
and education loan we can define into a separate class in parent class loan. So that
automatically these methods are available to every child loan class.

Example:
class Loan {
 //common methods which are required for any type of loan.
}
class HousingLoan extends Loan {
 //Housing loan specific methods.
}
class EducationLoan extends Loan {
 //Education Loan specific methods.
}

 For all java classes the most commonly required functionality is define inside
object class hence object class acts as a root for all java classes.

 For all java exceptions and errors the most common required functionality
defines inside Throwable class hence Throwable class acts as a root for exception
hierarchy.

http://www.durgasoft.com

JAVA Means DURGA SIR

191 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Diagram:

Multiple inheritance :
Having more than one Parent class at the same level is called multiple inheritance.

Example:

Any class can extends only one class at a time and can't extends more than one class
simultaneously hence java won't provide support for multiple inheritance.

http://www.durgasoft.com

JAVA Means DURGA SIR

192 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

But an interface can extends any no. Of interfaces at a time hence java provides support
for multiple inheritance through interfaces.

Example:

If our class doesn't extends any other class then only our class is the direct child class of
object.

Example:

If our class extends any other class then our class is not direct child class of object, It is
indirect child class of object , which forms multilevel inheritance.

http://www.durgasoft.com

JAVA Means DURGA SIR

193 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example 1:

Example 2:

Why java won't provide support for multiple inheritance?

There may be a chance of raising ambiguity problems.

Example:

Why ambiguity problem won't be there in interfaces?

Interfaces having dummy declarations and they won't have implementations hence no
ambiguity problem.

http://www.durgasoft.com

JAVA Means DURGA SIR

194 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

195 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Cyclic inheritance :
Cyclic inheritance is not allowed in java.

Example 1:

Example 2:

HAS-A relationship:
1. HAS-A relationship is also known as composition (or) aggregation.
2. There is no specific keyword to implement HAS-A relationship but mostly we

can use new operator.
3. The main advantage of HAS-A relationship is reusability.

Example:
class Engine
{
 //engine specific functionality
}
class Car
{
 Engine e=new Engine();
 //........................;
 //........................;
 //........................;
}

 class Car HAS-A engine reference.
 The main dis-advantage of HAS-A relationship increases dependency between

the components and creates maintains problems.

http://www.durgasoft.com

JAVA Means DURGA SIR

196 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Composition vs Aggregation:

Composition:

Without existing container object if there is no chance of existing contained objects then
the relationship between container object and contained object is called composition
which is a strong association.

Example:

University consists of several departments whenever university object destroys
automatically all the department objects will be destroyed that is without existing
university object there is no chance of existing dependent object hence these are
strongly associated and this relationship is called composition.

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

197 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Aggregation :

Without existing container object if there is a chance of existing contained objects such
type of relationship is called aggregation. In aggregation objects have weak association.

Example:

Within a department there may be a chance of several professors will work whenever
we are closing department still there may be a chance of existing professor object
without existing department object the relationship between department and professor
is called aggregation where the objects having weak association.

Example:

Note :

In composition container , contained objects are strongly associated, and but container
object holds contained objects directly
But in Aggregation container and contained objects are weakly associated and
container object just now holds the reference of contained objects.

Method signature:

In java, method signature consists of name of the method followed by argument types.

http://www.durgasoft.com

JAVA Means DURGA SIR

198 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

 In java return type is not part of the method signature.
 Compiler will use method signature while resolving method calls.

 class Test {
 public void m1(double d) { }
 public void m2(int i) { }
 public static void main(String ar[]) {
 Test t=new Test();
 t.m1(10.5);
 t.m2(10);
 t.m3(10.5); //CE
 }
 }
 CE : cannot find symbol
 symbol : method m3(double)
 location : class Test
Within the same class we can't take 2 methods with the same signature otherwise we
will get compile time error.

Example:
public void methodOne() { }
public int methodOne() {
 return 10;
}
Output:
Compile time error
methodOne() is already defined in Test

Polymorphism:
Same name with different forms is the concept of polymorphism.

Example 1: We can use same abs() method for int type, long type, float type etc.

Example:

1. abs(int)
2. abs(long)
3. abs(float)

http://www.durgasoft.com

JAVA Means DURGA SIR

199 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example 2:
We can use the parent reference to hold any child objects.
We can use the same List reference to hold ArrayList object, LinkedList object, Vector
object, or Stack object.

Example:

1. List l=new ArrayList();
2. List l=new LinkedList();
3. List l=new Vector();
4. List l=new Stack();

Diagram:

http://www.durgasoft.com

JAVA Means DURGA SIR

200 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Diagram: 3 Pillars of OOPS

1) Inheritance talks about reusability.
2) Polymorphism talks about flexibility.
3) Encapsulation talks about security.

Beautiful definition of polymorphism:

A boy starts love with the word friendship, but girl ends love with the same word
friendship, word is the same but with different attitudes. This concept is nothing but
polymorphism.

Overloading :
1. Two methods are said to be overload if and only if both having the same name

but different argument types.
2. In 'C' language we can't take 2 methods with the same name and different types.

If there is a change in argument type compulsory we should go for new method
name.
Example :

3. Lack of overloading in "C" increases complexity of the programming.
4. But in java we can take multiple methods with the same name and different

argument types.

http://www.durgasoft.com

JAVA Means DURGA SIR

201 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

5. Having the same name and different argument types is called method
overloading.

6. All these methods are considered as overloaded methods.
7. Having overloading concept in java reduces complexity of the programming.

8. Example:
9. class Test {
10. public void methodOne() {
11. System.out.println("no-arg method");
12. }
13. public void methodOne(int i) {
14. System.out.println("int-arg method"); //overloaded methods
15. }
16. public void methodOne(double d) {
17. System.out.println("double-arg method");
18. }
19. public static void main(String[] args) {
20. Test t=new Test();
21. t.methodOne();//no-arg method
22. t.methodOne(10);//int-arg method
23. t.methodOne(10.5);//double-arg method
24. }
25. }
26. Conclusion : In overloading compiler is responsible to perform method

resolution(decision) based on the reference type(but not based on run time
object). Hence overloading is also considered as compile time polymorphism(or)
static polymorphism (or)early biding.

http://www.durgasoft.com

JAVA Means DURGA SIR

202 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Case 1: Automatic promotion in overloading.

 In overloading if compiler is unable to find the method with exact match we
won't get any compile time error immediately.

 1st compiler promotes the argument to the next level and checks whether the
matched method is available or not if it is available then that method will be
considered if it is not available then compiler promotes the argument once again
to the next level. This process will be continued until all possible promotions still
if the matched method is not available then we will get compile time error. This
process is called automatic promotion in overloading.

The following are various possible automatic promotions in overloading.

Diagram :

Example:
class Test
{
 public void methodOne(int i)
 {
 System.out.println("int-arg method");
 }
 public void methodOne(float f) //overloaded methods
 {
 System.out.println("float-arg method");
 }
 public static void main(String[] args)
 {
 Test t=new Test();
 //t.methodOne('a');//int-arg method
 //t.methodOne(10l);//float-arg method
 t.methodOne(10.5);//C.E:cannot find symbol
 }
}
Case 2:
class Test
{
 public void methodOne(String s)
 {
 System.out.println("String version");
 }
 public void methodOne(Object o) //Both methods are said to
 //be
overloaded methods.
 {

http://www.durgasoft.com

JAVA Means DURGA SIR

203 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 System.out.println("Object version");
 }
 public static void main(String[] args)
 {
 Test t=new Test();
 t.methodOne("arun");//String version
 t.methodOne(new Object());//Object version
 t.methodOne(null);//String version
 }
}

Note :
While resolving overloaded methods exact match will always get high priority,
While resolving overloaded methods child class will get the more priority than parent
class

Case 3:
class Test{
 public void methodOne(String s) {
 System.out.println("String version");
 }
 public void methodOne(StringBuffer s) {
 System.out.println("StringBuffer version");
 }
 public static void main(String[] args) {
 Test t=new Test();
 t.methodOne("arun");//String version
 t.methodOne(new StringBuffer("sai"));//StringBuffer version
 t.methodOne(null);//CE : reference to m1() is ambiquous
 }
}
Output:

Case 4:
class Test {
public void methodOne(int i,float f) {
 System.out.println("int-float method");
 }
 public void methodOne(float f,int i) {
 System.out.println("float-int method");
 }
 public static void main(String[] args) {
 Test t=new Test();
 t.methodOne(10,10.5f);//int-float method
 t.methodOne(10.5f,10);//float-int method
 t.methodOne(10,10); //C.E:
 //CE:reference to methodOne is ambiguous,
 //both method methodOne(int,float) in Test

http://www.durgasoft.com

JAVA Means DURGA SIR

204 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 //and method methodOne(float,int) in Test match
 t.methodOne(10.5f,10.5f);//C.E:
 cannot find symbol
 symbol : methodOne(float, float)
 location : class Test

 }
}
Case 5 :
class Test{
 public void methodOne(int i) {
 System.out.println("general method");
 }
 public void methodOne(int...i) {
 System.out.println("var-arg method");
 }
 public static void main(String[] args) {
 Test t=new Test();
 t.methodOne();//var-arg method
 t.methodOne(10,20);//var-arg method
 t.methodOne(10);//general method
 }
}

In general var-arg method will get less priority that is if no other method matched then
only var-arg method will get chance for execution it is almost same as default case inside
switch.

Case 6:
class Animal{ }
class Monkey extends Animal{}
class Test{
 public void methodOne(Animal a) {
 System.out.println("Animal version");
 }
 public void methodOne(Monkey m) {
 System.out.println("Monkey version");
 }
 public static void main(String[] args) {
 Test t=new Test();
 Animal a=new Animal();
 t.methodOne(a);//Animal version
 Monkey m=new Monkey();
 t.methodOne(m);//Monkey version
 Animal a1=new Monkey();
 t.methodOne(a1);//Animal version
 }
}

In overloading method resolution is always based on reference type and runtime object
won't play any role in overloading.

Overriding :
1. Whatever the Parent has by default available to the Child through inheritance, if

the Child is not satisfied with Parent class method implementation then Child is

http://www.durgasoft.com

JAVA Means DURGA SIR

205 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

allow to redefine that Parent class method in Child class in its own way this
process is called overriding.

2. The Parent class method which is overridden is called overridden method.
3. The Child class method which is overriding is called overriding method.

4. Example 1:
5.
6. class Parent {
7. public void property(){
8. System.out.println("cash+land+gold");
9. }
10. public void marry() {
11. System.out.println("subbalakshmi"); //overridden

method
12. }
13. }
14. class Child extends Parent{ //overriding
15. public void marry() {
16. System.out.println("3sha/4me/9tara/anushka");

//overriding method
17. }
18. }
19. class Test {
20. public static void main(String[] args) {
21. Parent p=new Parent();
22. p.marry();//subbalakshmi(parent method)
23. Child c=new Child();
24. c.marry();//Trisha/nayanatara/anushka(child method)
25. Parent p1=new Child();
26. p1.marry();//Trisha/nayanatara/anushka(child method)
27. }
28. }
29. In overriding method resolution is always takes care by JVM based on runtime

object hence overriding is also considered as runtime polymorphism or dynamic
polymorphism or late binding.

30. The process of overriding method resolution is also known as dynamic method
dispatch.

Note: In overriding runtime object will play the role and reference type is dummy.

Rules for overriding :

http://www.durgasoft.com

JAVA Means DURGA SIR

206 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

1. In overriding method names and arguments must be same. That is method
signature must be same.

2. Until 1.4 version the return types must be same but from 1.5 version onwards co-
variant return types are allowed.

3. According to this Child class method return type need not be same as Parent
class method return type its Child types also allowed.

4. Example:
5. class Parent {
6. public Object methodOne() {
7. return null;
8. }
9. }
10. class Child extends Parent {
11. public String methodOne() {
12. return null;
13. }
14. }
15.
16. C:> javac -source 1.4 Parent.java //error

It is valid in "1.5" but invalid in "1.4".

Diagram:

Co-variant return type concept is applicable only for object types but not for
primitives.

Private methods are not visible in the Child classes hence overriding concept is not applicable for
private methods. Based on own requirement we can declare the same Parent class private method
in child class also. It is valid but not overriding.
Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

207 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Parent class final methods we can't override in the Child class.

17. Example:
18. class Parent {
19. public final void methodOne() {}
20. }
21. class Child extends Parent{
22. public void methodOne(){}
23. }
24. Output:

http://www.durgasoft.com

JAVA Means DURGA SIR

208 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

25. Compile time error:
26. methodOne() in Child cannot override methodOne()
27. in Parent; overridden method is final

Parent class non final methods we can override as final in child class. We can
override native methods in the child classes.

28. We should override Parent class abstract methods in Child classes to provide
implementation.

29. Example:
30. abstract class Parent {
31. public abstract void methodOne();
32. }
33. class Child extends Parent {
34. public void methodOne() { }
35. }

Diagram:

36. We can override a non-abstract method as abstract
this approach is helpful to stop availability of Parent method implementation to
the next level child classes.

37. Example:
38. class Parent {

http://www.durgasoft.com

JAVA Means DURGA SIR

209 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

39. public void methodOne() { }
40. }
41. abstract class Child extends Parent {
42. public abstract void methodOne();
43. }

Synchronized, strictfp, modifiers won't keep any restrictions on overriding.

Diagram:

44. While overriding we can't reduce the scope of access modifier.
45. Example:
46. class Parent {
47. public void methodOne() { }
48. }
49. class Child extends Parent {
50. protected void methodOne() { }
51. }
52. Output:
53. Compile time error :
54. methodOne() in Child cannot override methodOne() in Parent;
55. attempting to assign weaker access privileges; was public

http://www.durgasoft.com

JAVA Means DURGA SIR

210 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Diagram:

private < default < protected < public

Checked Vs Un-checked Exceptions :
 The exceptions which are checked by the compiler for smooth execution of the

program at runtime are called checked exceptions.
 The exceptions which are not checked by the compiler are called un-checked

exceptions.
 RuntimeException and its child classes, Error and its child classes are unchecked

except these the remaining are checked exceptions.

http://www.durgasoft.com

JAVA Means DURGA SIR

211 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Diagram:

Rule: While overriding if the child class method throws any checked exception
compulsory the parent class method should throw the same checked exception or its
parent otherwise we will get compile time error.

But there are no restrictions for un-checked exceptions.

Example:
class Parent {
 public void methodOne() {}
}
class Child extends Parent{
 public void methodOne()throws Exception {}
}

http://www.durgasoft.com

JAVA Means DURGA SIR

212 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Output:
Compile time error :
methodOne() in Child cannot override methodOne() in Parent;
overridden method does not throw java.lang.Exception

Examples :

Overriding with respect to static methods:
Case 1:

We can't override a static method as non static.

http://www.durgasoft.com

JAVA Means DURGA SIR

213 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:
class Parent
{
public static void methodOne(){}
 //here static methodOne() method is a class level
}
class Child extends Parent
{
public void methodOne(){}
//here methodOne() method is a object level hence
 // we can't override methodOne() method
}

output :
CE: methodOne in Child can't override methodOne() in Parent ;
 overriden method is static
Case 2:

Similarly we can't override a non static method as static.

Case 3:
class Parent
{
 public static void methodOne() {}
}
class Child extends Parent {
 public static void methodOne() {}
}

It is valid. It seems to be overriding concept is applicable for static methods but it is not
overriding it is method hiding.

METHOD HIDING :
All rules of method hiding are exactly same as overriding except the following
differences.

Overriding Method hiding
1. Both Parent and Child class methods
should be non static.

1. Both Parent and Child class methods
should be static.

2. Method resolution is always takes care
by JVM based on runtime object.

2. Method resolution is always takes care by
compiler based on reference type.

http://www.durgasoft.com

JAVA Means DURGA SIR

214 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

3. Overriding is also considered as
runtime polymorphism (or) dynamic
polymorphism (or) late binding.

3. Method hiding is also considered as
compile time polymorphism (or) static
polymorphism (or) early biding.

Example:
class Parent {
 public static void methodOne() {
 System.out.println("parent class");
 }
}
class Child extends Parent{
 public static void methodOne(){
 System.out.println("child class");
 }
}
class Test{
 public static void main(String[] args) {
 Parent p=new Parent();
 p.methodOne();//parent class
 Child c=new Child();
 c.methodOne();//child class
 Parent p1=new Child();
 p1.methodOne();//parent class
 }
}

Note: If both Parent and Child class methods are non static then it will become
overriding and method resolution is based on runtime object. In this case the output is

Parent class
Child class
Child class

Overriding with respect to Var-arg methods:
A var-arg method should be overridden with var-arg method only. If we are trying to
override with normal method then it will become overloading but not overriding.

Example:
class Parent {
public void methodOne(int... i){
System.out.println("parent class");
}
}
class Child extends Parent { //overloading but not overriding.
public void methodOne(int i) {
System.out.println("child class");
}
}
class Test {
public static void main(String[] args) {
Parent p=new Parent();
p.methodOne(10);//parent class
Child c=new Child();
c.methodOne(10);//child class
Parent p1=new Child();
p1.methodOne(10);//parent class

http://www.durgasoft.com

JAVA Means DURGA SIR

215 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

}
}

In the above program if we replace child class method with var arg then it will become
overriding. In this case the output is

Parent class
Child class
Child class

Overriding with respect to variables:

 Overriding concept is not applicable for variables.
 Variable resolution is always takes care by compiler based on reference type.

Example:
class Parent
{
 int x=888;
}
class Child extends Parent
{
 int x=999;
}
class Test
{
 public static void main(String[] args)
 {
 Parent p=new Parent();
 System.out.println(p.x);//888
 Child c=new Child();
 System.out.println(c.x);//999
 Parent p1=new Child();
 System.out.println(p1.x);//888
 }
}

Note: In the above program Parent and Child class variables, whether both are static or
non static whether one is static and the other one is non static there is no change in the
answer.

http://www.durgasoft.com

JAVA Means DURGA SIR

216 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Differences between overloading and overriding ?

Property Overloading Overriding
1) Method
names Must be same. Must be same.

2) Argument
type

Must be different(at
least order) Must be same including order.

3) Method
signature Must be different. Must be same.

4) Return
types No restrictions. Must be same until 1.4v but from 1.5v onwards

we can take co-variant return types also.
5) private,
static, final
methods

Can be overloaded. Can not be overridden.

6) Access
modifiers No restrictions. Weakering/reducing is not allowed.

7) Throws
clause No restrictions.

If child class method throws any checked
exception compulsory parent class method should
throw the same checked exceptions or its parent
but no restrictions for un-checked exceptions.

8) Method
resolution

Is always takes care
by compiler based on
referenced type.

Is always takes care by JVM based on runtime
object.

9) Also
known as

Compile time
polymorphism (or)
static(or)early
binding.

Runtime polymorphism (or) dynamic (or) late
binding.

Note:

1. In overloading we have to check only method names (must be same) and
arguments (must be different) the remaining things like return type extra not
required to check.

2. But In overriding we should compulsory check everything like method names,
arguments, return types, throws keyword, modifiers etc.

Consider the method in parent class
Parent: public void methodOne(int i)throws IOException

In the child class which of the following methods we can take..

1. public void methodOne(int i)//valid(overriding)
2. private void methodOne()throws Exception//valid(overloading)
3. public native void methodOne(int i);//valid(overriding)
4. public static void methodOne(double d)//valid(overloading)

http://www.durgasoft.com

JAVA Means DURGA SIR

217 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

5. public static void methodOne(int i)
Compile time error :

methodOne(int) in Child cannot override methodOne(int) in Parent; overriding
method is static

6. public static abstract void methodOne(float f)
Compile time error :

1. illegal combination of modifiers: abstract and static
2. Child is not abstract and does not override abstract method

methodOne(float) in Child

What is the difference between ArrayList l=new ArrayList() & List l=new ArrayList() ?

ArrayList al=new ArrayList();
[Child c=new Child();]

List l=new ArrayList();
[Parent p=new Child();]

If we know runtime object type
exactly then we have to used this
approach

If we don't know exact Runtime object type then
we have to used this approach

By using child reference we can call
both parent & child calss methods.

By using parent reference we can call only method
available in parent class and child specific method
we can't call.

 We can use ArrayList reference to hold ArrayList object where as we can use
List reference to hold any list implemented class object (ArrayList, LinkedList,
Vector, Stack)

 By using ArrayList reference we can call both List and ArrayList methods but
by using List reference we can call only List interface specific methods and we
can't call ArrayList specific methods.

http://www.durgasoft.com

JAVA Means DURGA SIR

218 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

IIQ : In how many ways we can create an object ? (or) In
how many ways get an object in java ?

1. By using new Operator :
2. Test t = new Test();
3. By using newInstance() :(Reflection Mechanism)
4. Test t=(Test)Class.forName("Test").newInstance();
5. By using Clone() :
6. Test t1 = new Test();
7. Test t2 = (Test)t1.Clone();
8. By using Factory methods :
9. Runtime r = Runtime.getRuntime();
10. DateFormat df = DateFormat.getInstance();
11. By using Deserialization :
12. FileInputStream fis = new FileInputStream("abc.ser");
13. ObjectInputStream ois = new ObjectInputStream(fis);
14. Test t = (Test)ois.readObject();

Constructors :
1. Object creation is not enough compulsory we should perform initialization then

only the object is in a position to provide the response properly.
2. Whenever we are creating an object some piece of the code will be executed

automatically to perform initialization of an object this piece of the code is
nothing but constructor.

3. Hence the main objective of constructor is to perform initialization of an object.

Example:
class Student
{
 String name;
 int rollno;
 Student(String name,int rollno) //Constructor
 {
 this.name=name;
 this.rollno=rollno;
 }
 public static void main(String[] args)
 {
 Student s1=new Student("vijayabhaskar",101);
 Student s2=new Student("bhaskar",102);
 }
}

http://www.durgasoft.com

JAVA Means DURGA SIR

219 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Diagram:

Constructor Vs instance block:

1. Both instance block and constructor will be executed automatically for every
object creation but instance block 1st followed by constructor.

2. The main objective of constructor is to perform initialization of an object.
3. Other than initialization if we want to perform any activity for every object

creation we have to define that activity inside instance block.
4. Both concepts having different purposes hence replacing one concept with

another concept is not possible.
5. Constructor can take arguments but instance block can't take any arguments

hence we can't replace constructor concept with instance block.
6. Similarly we can't replace instance block purpose with constructor.

Demo program to track no of objects created for a class:
class Test
{
 static int count=0;
 {
 count++; //instance block
 }
 Test()
 {}
 Test(int i)
 {}
 public static void main(String[] args)
 {
 Test t1=new Test();
 Test t2=new Test(10);
 Test t3=new Test();
 System.out.println(count);//3
 }
}

Rules to write constructors:

1. Name of the constructor and name of the class must be same.
2. Return type concept is not applicable for constructor even void also by mistake if

we are declaring the return type for the constructor we won't get any compile
time error and runtime error compiler simply treats it as a method.

3. Example:
4. class Test
5. {
6. void Test() //it is not a constructor and it is a method
7. {}
8. }

http://www.durgasoft.com

JAVA Means DURGA SIR

220 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

9. It is legal (but stupid) to have a method whose name is exactly same as class
name.

10. The only applicable modifiers for the constructors are public, default, private,
protected.

11. If we are using any other modifier we will get compile time error.

Example:
class Test
{
 static Test()
 {}
}
Output:
Modifier static not allowed here

Default constructor:

1. For every class in java including abstract classes also constructor concept is
applicable.

2. If we are not writing at least one constructor then compiler will generate default
constructor.

3. If we are writing at least one constructor then compiler won't generate any
default constructor. Hence every class contains either compiler generated
constructor (or) programmer written constructor but not both simultaneously.

http://www.durgasoft.com

JAVA Means DURGA SIR

221 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Prototype of default constructor:

1. It is always no argument constructor.
2. The access modifier of the default constructor is same as class modifier. (This

rule is applicable only for public and default).
3. Default constructor contains only one line. super(); it is a no argument call to

super class constructor.

Programmers code Compiler generated code

class Test { }

class Test {
 Test()
 {
 super();
 }
}

public class Test { }

public class Test {
 public Test()
 {
 super();
 }
}

class Test
{
 void Test(){}
}

class Test
{
 Test()
 {
 super();
 }
 void Test()
 {}
}

class Test
{
 Test(int i)
 {}
}

class Test
{
 Test(int i)
 {
 super();
 }
}

class Test
{
 Test()
 {
 super();
 }
}

class Test
{
 Test()
 {
 super();
 }
}

class Test
{
 Test(int i)
 {
 this();
 }
 Test()
 {}
}

class Test
{
 Test(int i)
 {
 this();
 }
 Test()
 {
 super();
 }
}

http://www.durgasoft.com

JAVA Means DURGA SIR

222 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

super() vs this():

The 1st line inside every constructor should be either super() or this() if we are not
writing anything compiler will always generate super().

Case 1: We have to take super() (or) this() only in the 1st line of constructor. If we are
taking anywhere else we will get compile time error.
Example:
class Test
{
 Test()
 {
 System.out.println("constructor");
 super();
 }
}
Output:
Compile time error.
Call to super must be first statement in constructor
Case 2: We can use either super() (or) this() but not both simultaneously.
Example:
class Test
{
 Test()
 {
 super();
 this();
 }
}
Output:
Compile time error.
Call to this must be first statement in constructor
Case 3: We can use super() (or) this() only inside constructor. If we are using anywhere
else we will get compile time error.
Example:
class Test
{
 public void methodOne()
 {
 super();
 }
}
Output:
Compile time error.
Call to super must be first statement in constructor

That is we can call a constructor directly from another constructor only.

http://www.durgasoft.com

JAVA Means DURGA SIR

223 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Diagram:

Example:
super(), this() super, this
These are constructors calls. These are keywords
We can use these to invoke super class &
current constructors directly

We can use refers parent class and current
class instance members.

We should use only inside constructors as
first line, if we are using outside of
constructor we will get compile time error.

We can use anywhere (i.e., instance area)
except static area , other wise we will get
compile time error .

Example:
class Test
{
 public static void main(String[] args)
 {
 System.out.println(super.hashCode());
 }
}
Output:
Compile time error.
Non-static variable super cannot be referenced from a static context.

http://www.durgasoft.com

JAVA Means DURGA SIR

224 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Overloaded constructors :

A class can contain more than one constructor and all these constructors having the
same name but different arguments and hence these constructors are considered as
overloaded constructors.

Example:
class Test {
 Test(double d){
 System.out.println("double-argument constructor");
 }
 Test(int i) {
 this(10.5);
 System.out.println("int-argument constructor");
 }
 Test() {
 this(10);
 System.out.println("no-argument constructor");
 }
 public static void main(String[] args) {
 Test t1=new Test(); //no-argument constructor/int-argument
 //constructor/double-argument constructor
 Test t2=new Test(10);
 //int-argument constructor/double-argument constructor
 Test t3=new Test(10.5);//double-argument constructor
 }
}

 Parent class constructor by default won't available to the Child. Hence
Inheritance concept is not applicable for constructors and hence overriding
concept also not applicable to the constructors. But constructors can be
overloaded.

 We can take constructor in any java class including abstract class also but we
can't take constructor inside interface.

http://www.durgasoft.com

JAVA Means DURGA SIR

225 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

We can't create object for abstract class but abstract class can contain constructor what
is the need ?

Abstract class constructor will be executed for every child class object creation to
perform initialization of child class object only.

Which of the following statement is true ?

1. Whenever we are creating child class object then automatically parent class
object will be created.(false)

2. Whenever we are creating child class object then parent class constructor will be
executed.(true)

Example:
abstract class Parent
{
 Parent()
 {
 System.out.println(this.hashCode());
 //11394033//here this means child class object
 }
}
class Child extends Parent
{
 Child()
 {
 System.out.println(this.hashCode());//11394033
 }
}
class Test
{
 public static void main(String[] args)
 {
 Child c=new Child();
 System.out.println(c.hashCode());//11394033
 }
}

Case 1: recursive method call is always runtime exception where as recursive
constructor invocation is a compile time error.

http://www.durgasoft.com

JAVA Means DURGA SIR

226 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Note:

Recursive functions:

A function is called using two methods (types).

1. Nested call
2. Recursive call

Nested call:

 Calling a function inside another function is called nested call.
 In nested call there is a calling function which calls another function(called

function).

Example:
public static void methodOne()
 {
 methodTwo();
 }
 public static void methodTwo()
 {
 methodOne();
 }

Recursive call:

 Calling a function within same function is called recursive call.
 In recursive call called and calling function is same.

Example:
public void methodOne()
 {
 methodOne();
 }

http://www.durgasoft.com

JAVA Means DURGA SIR

227 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

Note: Compiler is responsible for the following checkings.

1. Compiler will check whether the programmer wrote any constructor or not. If
he didn't write at least one constructor then compiler will generate default
constructor.

2. If the programmer wrote any constructor then compiler will check whether he
wrote super() or this() in the 1st line or not. If his not writing any of these
compiler will always write (generate) super().

3. Compiler will check is there any chance of recursive constructor invocation. If
there is a possibility then compiler will raise compile time error.

http://www.durgasoft.com

JAVA Means DURGA SIR

228 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Case 2:

 If the Parent class contains any argument constructors while writing Child
classes we should takes special care with respect to constructors.

 Whenever we are writing any argument constructor it is highly recommended to
write no argument constructor also.

Case 3:
class Parent
{
 Parent()throws java.io.IOException
 {}
}
class Child extends Parent
{}
Output:
Compile time error
Unreported exception java.io.IOException in default constructor.
Example:
class Parent
{
 Parent()throws java.io.IOException
 {}
}
class Child extends Parent
{
 Child()throws Exception
 {
 super();
 }
}

If Parent class constructor throws some checked exception compulsory Child class
constructor should throw the same checked exception (or) its Parent.

http://www.durgasoft.com

JAVA Means DURGA SIR

229 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Singleton classes :

For any java class if we are allow to create only one object such type of class is said to be
singleton class.

Example:
1) Runtime class
2) ActionServlet
3) ServiceLocator
4) BusinessDelegate

Runtime r1=Runtime.getRuntime();
 //getRuntime() method is a factory method
Runtime r2=Runtime.getRuntime();
Runtime r3=Runtime.getRuntime();
...
...

System.out.println(r1==r2);//true
System.out.println(r1==r3);//true

Diagram:

http://www.durgasoft.com

JAVA Means DURGA SIR

230 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Advantage of Singleton class :
If the requirement is same then instead of creating a separate object for every person
we will create only one object and we can share that object for every required person we
can achieve this by using singleton classes. That is the main advantages of singleton
classes are Performance will be improved and memory utilization will be improved.

Creation of our own singleton classes:

We can create our own singleton classes for this we have to use private constructor,
static variable and factory method.

Example:
class Test
{
 private static Test t=null;
 private Test()
 {}
 public static Test getTest()
 //getTest() method is a factory method
 {
 if(t==null)
 {
 t=new Test();
 }
 return t;
 }
}
class Client
{
 public static void main(String[] args)
 {
 System.out.println(Test.getTest().hashCode());//1671711
 System.out.println(Test.getTest().hashCode());//1671711
 System.out.println(Test.getTest().hashCode());//1671711
 System.out.println(Test.getTest().hashCode());//1671711
 }
}

Diagram:

Note:

We can create any xxxton classes like(double ton,trible ton...etc)

Example:
class Test
{
 private static Test t1=null;
 private static Test t2=null;

http://www.durgasoft.com

JAVA Means DURGA SIR

231 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 private Test()
 {}
 public static Test getTest()
 //getTest() method is a factory method
 {
 if(t1==null)
 {
 t1=new Test();
 return t1;
 }
 else if(t2==null)
 {
 t2=new Test();
 return t2;
 }
 else
 {
 if(Math.random()<0.5) //Math.random() limit : 0<=x<1
 return t1;
 else
 return t2;
 }
 }
}
class Client
{
 public static void main(String[] args)
 {
 System.out.println(Test.getTest().hashCode());//1671711
 System.out.println(Test.getTest().hashCode());//11394033
 System.out.println(Test.getTest().hashCode());//11394033
 System.out.println(Test.getTest().hashCode());//1671711
 }
}

IIQ : We are not allowed to create child class but class is not final , How it is Possible ?

By declaring every constructor has private.
class Parent {
 private Parent() {
 }
We can't create child class for this class

Note : When ever we are creating child class object automatically parent class
constructor will be executed but parent object won't be created.

class Parent {
 Parent() {
 System.out.println(this.hashCode()); //123
 }
}
class Child extends Parent {
Child() {
 System.out.println(this.hashCode());//123
 }
}
class Test {
 public static void main(String ar[]) {

http://www.durgasoft.com

JAVA Means DURGA SIR

232 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 Child c=new Child();
 System.out.println(c.hashCode());//123
Which of the following is true ?

1. The name of the constructor and name of the class need not be same.(false)
2. We can declare return type for the constructor but it should be void. (false)
3. We can use any modifier for the constructor. (false)
4. Compiler will always generate default constructor. (false)
5. The modifier of the default constructor is always default. (false)
6. The 1st line inside every constructor should be super always. (false)
7. The 1st line inside every constructor should be either super or this and if we are

not writing anything compiler will always place this().(false)
8. Overloading concept is not applicable for constructor. (false)
9. Inheritance and overriding concepts are applicable for constructors. (false)
10. Concrete class can contain constructor but abstract class cannot. (false)
11. Interface can contain constructor. (false)
12. Recursive constructor call is always runtime exception. (false)
13. If Parent class constructor throws some un-checked exception compulsory Child

class constructor should throw the same un-checked exception or it's Parent.
(false)

14. Without using private constructor we can create singleton class. (false)
15. None of the above.(true)

Factory method:

By using class name if we are calling a method and that method returns the same class
object such type of method is called factory method.

Example:
Runtime r=Runtime.getRuntime();//getRuntime is a factory method.
DateFormat df=DateFormat.getInstance();

If object creation required under some constraints then we can implement by using
factory method.

http://www.durgasoft.com

JAVA Means DURGA SIR

233 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Static control flow :

Example:

Analysis:

Output:
E:\scjp>javac Base.java
E:\scjp>java Base
0
First static block
Second static block

http://www.durgasoft.com

JAVA Means DURGA SIR

234 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

20
Main method

Read indirectly write only state (or) RIWO :

With in the static block if we are trying to read any variable then that read is
considered as "direct read"
If we are calling a method , and with in the method if we are trying to read a method ,
that read is called Indirect read

If a variable is in RIWO state then we can't perform read operation directly otherwise
we will get compile time error saying " illegal forward reference ".

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

235 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Static control flow parent to child relationship :

http://www.durgasoft.com

JAVA Means DURGA SIR

236 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Analysis:

Output:
E:\scjp>java Derived
0
Base static block
0
Derived first static block
Derived second static block
200
Derived main
Output:
E:\scjp>java Base
0
Base static block
20
Basic main

Whenever we are executing Child class the following sequence of events will be
performed automatically.

1. Identification of static members from Parent to Child. [1 to 11]
2. Execution of static variable assignments and static blocks from Parent to

Child.[12 to 22]
3. Execution of Child class main() method.[23 to 25].

Note : When ever we are loading child class autimatically the parent class will be loaded
but when ever we are loading parent class the child class don't be loaded automatically.

http://www.durgasoft.com

JAVA Means DURGA SIR

237 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Static block:

 Static blocks will be executed at the time of class loading hence if we want to
perform any activity at the time of class loading we have to define that activity
inside static block.

 With in a class we can take any no. Of static blocks and all these static blocks will
be executed from top to bottom.

Example:

The native libraries should be loaded at the time of class loading hence we have to
define that activity inside static block.

Example:
class Test
{
 static
 {
 System.loadLibrary("native library path");
 }
}

Ex 2 : Every JDBC driver class internally contains a static block to register the driver
with DriverManager hence programmer is not responsible to define this explicitly.

Example:
class Driver
{
 static
 {
 //Register this driver with DriverManager
 }
}
IIQ : Without using main() method is it possible to print some statements to the
console?
Ans : Yes, by using static block.

Example:
class Google
{
 static
 {
 System.out.println("hello i can print");
 System.exit(0);
 }
}
Output:
Hello i can print
IIQ : Without using main() method and static block is it possible to print some
statements to the console ?
Example 1:
class Test
{
 static int i=methodOne();
 public static int methodOne()
 {

http://www.durgasoft.com

JAVA Means DURGA SIR

238 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

System.out.println("hello i can print");
 System.exit(0);
 return 10;
 }
}
Output:
Hello i can print
Example 2:
class Test
{
 static Test t=new Test();
 Test()
 {
 System.out.println("hello i can print");
 System.exit(0);
 }
}
Output:
Hello i can print
Example 3:
class Test
{
 static Test t=new Test();
 {
 System.out.println("hello i can print");
 System.exit(0);
 }
}
Output:
Hello i can print

IIQ : Without using System.out.println() statement is it possible to print some statement
to the console ?
Example:
class Test
{
 public static void main(String[] args)
 {
 System.err.println("hello");
 }
}

Note : Without using main() method we can able to print some statement to the sonsole ,
but this rule is applicable untill 1.6 version from 1.7 version onwards to run java
program main() method is mandatory.

class Test {
 static {
 System.out.println("ststic block");
 System.exit(0);
 }
 }
It is valid in 1.6 version but invalid or won't run in 1.7 version

http://www.durgasoft.com

JAVA Means DURGA SIR

239 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Instance control flow:

Analysis:
i=0[RIWO]
j=0[RIWO]
i=10[R&W]
j=20[R&W]

http://www.durgasoft.com

JAVA Means DURGA SIR

240 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Output:

Whenever we are executing a java class static control flow will be executed. In the Static
control flow Whenever we are creating an object the following sequence of events will
be performed automatically.

1. Identification of instance members from top to bottom(3 to 8).
2. Execution of instance variable assignments and instance blocks from top to

bottom(9 to 14).
3. Execution of constructor.

Note: static control flow is one time activity and it will be executed at the time of class
loading.
But instance control flow is not one time activity for every object creation it will be
executed.

Instance control flow in Parent to Child relationship :

Example:
class Parent
{
 int x=10;
 {
 methodOne();
 System.out.println("Parent first instance block");
 }
 Parent()
 {
 System.out.println("parent class constructor");
 }
 public static void main(String[] args)
 {
 Parent p=new Parent();
 System.out.println("parent class main method");
 }
 public void methodOne()
 {
 System.out.println(y);
 }
 int y=20;

http://www.durgasoft.com

JAVA Means DURGA SIR

241 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

}
class Child extends Parent
{
 int i=100;
 {
 methodTwo();
 System.out.println("Child first instance block");
 }
 Child()
 {
 System.out.println("Child class constructor");
 }
 public static void main(String[] args)
 {
 Child c=new Child();
 System.out.println("Child class main method");
 }
 public void methodTwo()
 {
 System.out.println(j);
 }
 {
 System.out.println("Child second instance block");
 }
 int j=200;
}

Output:
E:\scjp>javac Child.java
E:\scjp>java Child
0
Parent first instance block
Parent class constructor
0
Child first instance block
Child second instance block
Child class constructor
Child class main method

Whenever we are creating child class object the following sequence of events will be
executed automatically.

1. Identification of instance members from Parent to Child.
2. Execution of instance variable assignments and instance block only in Parent

class.
3. Execution of Parent class constructor.
4. Execution of instance variable assignments and instance blocks in Child class.
5. Execution of Child class constructor.

Note: Object creation is the most costly operation in java and hence if there is no
specific requirement never recommended to crate objects.

Example 1:
public class Initilization
{
 private static String methodOne(String msg) //-->1
 {
 System.out.println(msg);

http://www.durgasoft.com

JAVA Means DURGA SIR

242 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 return msg;
 }
 public Initilization() //-->4
 {
 m=methodOne("1"); //-->9
 }
 { //-->5
 m=methodOne("2"); //-->7
 }
 String m=methodOne("3"); //-->6 , //-->8
 public static void main(String[] args) //-->2
 {
 Object obj=new Initilization(); //-->3
 }
}
Analysis:

Output:
2
3
1
Example 2:
public class Initilization
{
 private static String methodOne(String msg) //-->1
 {
 System.out.println(msg);

http://www.durgasoft.com

JAVA Means DURGA SIR

243 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 return msg;
 }
 static String m=methodOne("1"); //-->2, //-->5
 {
 m=methodOne("2");
 }
 static //-->3
 {
 m=methodOne("3"); //-->6
 }
 public static void main(String[] args) //-->4
 {
 Object obj=new Initilization();
 }
}
Output:
1
3
2

We can't access instance variables directly from static area because at the time of
execution of static area JVM may not identify those members.

Example:

 But from the instance area we can access instance members directly.
 Static members we can access from anywhere directly because these are

identified already at the time of class loading only.

Type casting:
Parent class reference can be used to hold Child class object but by using that reference
we can't call Child specific methods.

Example:
Object o=new String("ashok");//valid
System.out.println(o.hashCode());//valid

http://www.durgasoft.com

JAVA Means DURGA SIR

244 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

System.out.println(o.length());//
 C.E:cannot find symbol,
 symbol : method length(),
 location: class java.lang.Object

Similarly we can use interface reference to hold implemented class object.

Example:
Runnable r=new Thread();
Type casting syntax:

Compile time checking :
Rule 1: The type of "d" and "c" must have some relationship [either Child to Parent
(or) Parent to Child (or) same type] otherwise we will get compile time error saying
inconvertible types.

Example 1:

http://www.durgasoft.com

JAVA Means DURGA SIR

245 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example 2:

Rule 2: "C" must be either same (or) derived type of "A" otherwise we will get compile
time error saying incompatible types.
Found: C
Required: A
Example 1:

Example 2:

http://www.durgasoft.com

JAVA Means DURGA SIR

246 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Runtime checking :

The underlying object type of "d" must be either same (or) derived type of "C"
otherwise we will get runtime exception saying ClassCastException.

Example:

Diagram:

Base1 b=new Derived2();//valid
Object o=(Base1)b;//valid
Object o1=(Base2)o;//invalid
Object o2=(Base2)b;//invalid
Base2 b1=(Base1)(new Derived1());//invalid
Base2 b2=(Base2)(new Derived3());//valid
Base2 b2=(Base2)(new Derived1());//invalid

Through Type Casting just we are converting the type of object but not object itself that
is we are performing type casting but not object casting.

http://www.durgasoft.com

JAVA Means DURGA SIR

247 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Through Type Casting we are not create any new objects for the existing objects we are
providing another type of reference variable(mostly Parent type).

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

248 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example 1:

http://www.durgasoft.com

JAVA Means DURGA SIR

249 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example 2:

It is overriding and method resolution is based on runtime object.
C c=new C();
c.methodOne();//c
((B)c).methodOne();//c
((A)((B)c)).methodOne();//c

http://www.durgasoft.com

JAVA Means DURGA SIR

250 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example 3:

It is method hiding and method resolution is based on reference type.
C c=new C();
c.methodOne();//C
((B)c).methodOne();//B
((A)((B)c)).methodOne();//A

Example 4:

http://www.durgasoft.com

JAVA Means DURGA SIR

251 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

C c=new C();
System.out.println(c.x);//999
System.out.println(((B)c).x);//888
System.out.println(((A)((B)c)).x);//777

 Variable resolution is always based on reference type only.
 If we are changing variable as static then also we will get the same output.

Coupling :
The degree of dependency between the components is called coupling.
Example:
class A
{
 static int i=B.j;
}
class B extends A
{
 static int j=C.methodOne();
}
class C extends B
{
 public static int methodOne()
 {
 return D.k;
 }
}
class D extends C
{
 static int k=10;
 public static void main(String[] args)
 {
 D d=new D();
 }
}
The above components are said to be tightly coupled to each other because the
dependency between the components is more.

Tightly coupling is not a good programming practice because it has several serious
disadvantages.

1. Without effecting remaining components we can't modify any component hence
enhancement(development) will become difficult.

2. It reduces maintainability of the application.
3. It doesn't promote reusability of the code.

It is always recommended to maintain loosely coupling between the components.

Cohesion:
For every component we have to maintain a clear well defined functionality such type of
component is said to be follow high cohesion.

http://www.durgasoft.com

JAVA Means DURGA SIR

252 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Diagram:

High cohesion is always good programming practice because it has several advantages.

1. Without effecting remaining components we can modify any component hence
enhancement will become very easy.

2. It improves maintainability of the application.
3. It promotes reusability of the application.(where ever validation is required we

can reuse the same validate servlet without rewriting)

Note: It is highly recommended to follow loosely coupling and high cohesion.

http://www.durgasoft.com

JAVA Means DURGA SIR

253 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

