

JAVA Means DURGA SIR

114 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

JAVA Means DURGA SIR

115 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

JAVA Means DURGA SIR

116 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Declaration and Access Modifiers
Agenda

1. Java source file structure
o Import statement
o Types of Import Statements

 Explicit class import
 Implicit class import

o Difference between C language #include and java language import ?
o 1.5 versions new features
o Static import

 Without static import
 With static import

o Explain about System.out.println statement ?
o What is the difference between general import and static import ?
o Package statement

 How to compile package Program
 How to execute package Program

o Java source file structure
2. Class Modifiers

o Only applicable modifiers for Top Level classes
o What is the difference between access specifier and access modifier ?
o Public Classes
o Default Classes
o Final Modifier

 Final Methods
 Final Class

o Abstract Modifier
 Abstract Methods
 Abstract class

o The following are the various illegal combinations for methods
o What is the difference between abstract class and abstract method ?
o What is the difference between final and abstract ?
o Strictfp
o What is the difference between abstract and strictfp ?

3. Member modifiers
o Public members
o Default member
o Private members
o Protected members
o Compression of private, default, protected and public
o Final variables

 Final instance variables
 At the time of declaration
 Inside instance block

http://www.durgasoft.com

JAVA Means DURGA SIR

117 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 Inside constructor
 Final static variables

 At the time of declaration
 Inside static block

 Final local variables
o Formal parameters
o Static modifier
o Native modifier

 Pseudo code
o Synchronized
o Transient modifier
o Volatile modifier
o Summary of modifier

4. Interfaces
o Interface declarations and implementations
o Extends vs implements
o Interface methods
o Interface variables
o Interface naming conflicts

 Method naming conflicts
 Variable naming conflicts

o Marker interface
o Adapter class
o Interface vs abstract class vs concrete class
o Difference between interface and abstract class?
o Conclusions

http://www.durgasoft.com

JAVA Means DURGA SIR

118 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Java source file structure:
 A java Program can contain any no. Of classes but at most one class can be

declared as public. "If there is a public class the name of the Program and name
of the public class must be matched otherwise we will get compile time error".

 If there is no public class then any name we gives for java source file.

http://www.durgasoft.com

JAVA Means DURGA SIR

119 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

Case 1:

If there is no public class then we can use any name for java source file there are no
restrictions.

Example:
A.java
B.java
C.java
Ashok.java

case 2:

http://www.durgasoft.com

JAVA Means DURGA SIR

120 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

If class B declared as public then the name of the Program should be B.java otherwise
we will get compile time error saying "class B is public, should be declared in a file
named B.java".

Case 3:

 If both B and C classes are declared as public and name of the file is B.java then
we will get compile time error saying "class C is public, should be declared in a
file named C.java".

 It is highly recommended to take only one class for source file and name of the
Program (file) must be same as class name. This approach improves readability
and understandability of the code.

Example:

class A
{
public static void main(String args[]){
System.out.println("A class main method is executed");
}
}
class B
{
public static void main(String args[]){
System.out.println("B class main method is executed");
}
}
class C
{
public static void main(String args[]){
System.out.println("C class main method is executed");
}
}
class D
{
}

http://www.durgasoft.com

JAVA Means DURGA SIR

121 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Output:

D:\Java>java A
A class main method is executed
D:\Java>java B
B class main method is executed
D:\Java>java C
C class main method is executed
D:\Java>java D
Exception in thread "main" java.lang.NoSuchMethodError: main
D:\Java>java Ashok
Exception in thread "main" java.lang.NoClassDefFoundError: Ashok

 We can compile a java Program but not java class in that Program for every
class one dot class file will be created.

 We can run a java class but not java source file whenever we are trying to run a
class the corresponding class main method will be executed.

 If the class won't contain main method then we will get runtime exception saying
"NoSuchMethodError: main".

 If we are trying to execute a java class and if the corresponding .class file is not
available then we will get runtime execution saying "NoClassDefFoundError:
Ashok".

Import statement:

class Test{
public static void main(String args[]){
ArrayList l=new ArrayList();
}
}
Output:
Compile time error.
D:\Java>javac Test.java
Test.java:3: cannot find symbol
symbol : class ArrayList
location: class Test

ArrayList l=new ArrayList();

http://www.durgasoft.com

JAVA Means DURGA SIR

122 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 We can resolve this problem by using fully qualified name "java.util.ArrayList
l=new java.util.ArrayList();". But problem with using fully qualified name every
time is it increases length of the code and reduces readability.

 We can resolve this problem by using import statements.

Example:

import java.util.ArrayList;
class Test{
public static void main(String args[]){
ArrayList l=new ArrayList();
}
}
Output:
D:\Java>javac Test.java

Hence whenever we are using import statement it is not require to use fully qualified
names we can use short names directly. This approach decreases length of the code and
improves readability.

Case 1: Types of Import Statements:

There are 2 types of import statements.

1) Explicit class import
2) Implicit class import.

Explicit class import:

Example: Import java.util.ArrayList

 This type of import is highly recommended to use because it improves
readability of the code.

 Best suitable for Hi-Tech city where readability is important.

Implicit class import:

Example: import java.util.*;

 It is never recommended to use because it reduces readability of the code.
 Best suitable for Ameerpet where typing is important.

http://www.durgasoft.com

JAVA Means DURGA SIR

123 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Case 2:
Which of the following import statements are meaningful ?

Case 3:

consider the following code.

class MyArrayList extends java.util.ArrayList
{
}

 The code compiles fine even though we are not using import statements because
we used fully qualified name.

 Whenever we are using fully qualified name it is not required to use import
statement. Similarly whenever we are using import statements it is not require to
use fully qualified name.

Case 4:

Example:

import java.util.*;
import java.sql.*;
class Test

http://www.durgasoft.com

JAVA Means DURGA SIR

124 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

{
public static void main(String args[])
{
Date d=new Date();
}}
Output:
Compile time error.
D:\Java>javac Test.java
Test.java:7: reference to Date is ambiguous,
 both class java.sql.Date in java.sql and class java.util.Date in java.util
match

Date d=new Date();

Note: Even in the List case also we may get the same ambiguity problem because it is
available in both util and awt packages.

Case 5:

While resolving class names compiler will always gives the importance in the following
order.

1. Explicit class import
2. Classes present in current working directory.
3. Implicit class import.

Example:

import java.util.Date;
import java.sql.*;
class Test
{
public static void main(String args[]){
Date d=new Date();
}}

The code compiles fine and in this case util package Date will be considered.

Case 6:

Whenever we are importing a package all classes and interfaces present in that package
are by default available but not sub package classes.

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

125 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

To use pattern class in our Program directly which import statement is required ?

Case7:

In any java Program the following 2 packages are not require to import because these
are available by default to every java Program.

1. java.lang package
2. default package(current working directory)

Case 8:

"Import statement is totally compile time concept" if more no of imports are there then
more will be the compile time but there is "no change in execution time".

Difference between C language #include and java language import ?

#include import
It can be used in C & C++ It can be used in Java
At compile time only compiler copy the
code from standard library and placed
in current program.

At runtime JVM will execute the
corresponding standard library and use it's
result in current program.

It is static inclusion It is dynamic inclusion
wastage of memory No wastage of memory
Ex : <jsp:@ file=""> Ex : <jsp:include >

http://www.durgasoft.com

JAVA Means DURGA SIR

126 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 In the case of C language #include all the header files will be loaded at the time
of include statement hence it follows static loading.

 But in java import statement no ".class" will be loaded at the time of import
statements in the next lines of the code whenever we are using a particular class
then only corresponding ".class" file will be loaded. Hence it follows "dynamic
loading" or "load-on -demand" or "load-on-fly".

1.5 versions new features :

1. For-Each
2. Var-arg
3. Queue
4. Generics
5. Auto boxing and Auto unboxing
6. Co-varient return types
7. Annotations
8. Enum
9. Static import
10. String builder

Static import:

This concept introduced in 1.5 versions. According to sun static import improves
readability of the code but according to worldwide Programming exports (like us) static
imports creates confusion and reduces readability of the code. Hence if there is no
specific requirement never recommended to use a static import.

Usually we can access static members by using class name but whenever we are using
static import it is not require to use class name we can access directly.

Without static import:

class Test
{
public static void main(String args[]){
System.out.println(Math.sqrt(4));
System.out.println(Math.max(10,20));
System.out.println(Math.random());
}}
Output:
D:\Java>javac Test.java
D:\Java>java Test
2.0
20
0.841306154315576

With static import:

import static java.lang.Math.sqrt;
import static java.lang.Math.*;

http://www.durgasoft.com

JAVA Means DURGA SIR

127 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

class Test
{
public static void main(String args[]){
System.out.println(sqrt(4));
System.out.println(max(10,20));
System.out.println(random());
}}
Output:
D:\Java>javac Test.java
D:\Java>java Test
2.0
20
0.4302853847363891

Explain about System.out.println statement ?

Example 1 and Example 2:

http://www.durgasoft.com

JAVA Means DURGA SIR

128 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example 3:
import static java.lang.System.out;
class Test
{
public static void main(String args[]){
out.println("hello");
out.println("hi");
}}
Output:
D:\Java>javac Test.java
D:\Java>java Test
hello
hi
Example 4:
import static java.lang.Integer.*;
import static java.lang.Byte.*;
class Test
{
public static void main(String args[]){
System.out.println(MAX_VALUE);
}}
Output:
Compile time error.
D:\Java>javac Test.java
Test.java:6: reference to MAX_VALUE is ambiguous,
 both variable MAX_VALUE in java.lang.Integer and variable MAX_VALUE in
java.lang.Byte match
System.out.println(MAX_VALUE);

Note: Two packages contain a class or interface with the same is very rare hence
ambiguity problem is very rare in normal import.

But 2 classes or interfaces can contain a method or variable with the same name is very
common hence ambiguity problem is also very common in static import.

While resolving static members compiler will give the precedence in the following order.

1. Current class static members

http://www.durgasoft.com

JAVA Means DURGA SIR

129 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

2. Explicit static import
3. implict static import.

Example:

 If we comet line one then we will get Integer class MAX_VALUE 2147483647.
 If we comet lines one and two then Byte class MAX_VALUE will be considered

127.

http://www.durgasoft.com

JAVA Means DURGA SIR

130 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Which of the following import statements are valid ?

Diagram:

http://www.durgasoft.com

JAVA Means DURGA SIR

131 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Usage of static import reduces readability and creates confusion hence if there is no
specific requirement never recommended to use static import.

What is the difference between general import and static import ?

 We can use normal imports to import classes and interfaces of a package.
whenever we are using normal import we can access class and interfaces directly
by their short name it is not require to use fully qualified names.

 We can use static import to import static members of a particular class.
whenever we are using static import it is not require to use class name we can
access static members directly.

Package statement:

It is an encapsulation mechanism to group related classes and interfaces into a single
module.

The main objectives of packages are:

 To resolve name confects.
 To improve modularity of the application.
 To provide security.
 There is one universally accepted naming conversion for packages that is to use

internet domain name in reverse.

Example:

How to compile package Program:

Example:
package com.durgajobs.itjobs;
class HydJobs
{
public static void main(String args[]){
System.out.println("package demo");

http://www.durgasoft.com

JAVA Means DURGA SIR

132 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

}
}

Javac HydJobs.java generated class file will be placed in current working directory.

Diagram:

 Javac -d . HydJobs.java
 -d means destination to place generated class files "." means current working

directory.
 Generated class file will be placed into corresponding package structure.

Diagram:

 If the specified package structure is not already available then this command
itself will create the required package structure.

 As the destination we can use any valid directory.
 If the specified destination is not available then we will get compile time error.

http://www.durgasoft.com

JAVA Means DURGA SIR

133 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

D:\Java>javac -d c: HydJobs.java

Diagram:

If the specified destination is not available then we will get compile time error.

Example:

D:\Java>javac -d z: HydJobs.java
If Z: is not available then we will get compile time error.

How to execute package Program:

D:\Java>java com.durgajobs.itjobs.HydJobs

At the time of execution compulsory we should provide fully qualified name.

Conclusion 1:

In any java Program there should be at most one package statement that is if we are
taking more than one package statement we will get compile time error.

Example:
package pack1;
package pack2;
class A
{
}
Output:
Compile time error.
D:\Java>javac A.java
A.java:2: class, interface, or enum expected
package pack2;
Conclusion 2:

http://www.durgasoft.com

JAVA Means DURGA SIR

134 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

In any java Program the 1st non comment statement should be package statement [if it
is available] otherwise we will get compile time error.

Example:
import java.util.*;
package pack1;
class A
{
}
Output:
Compile time error.
D:\Java>javac A.java
A.java:2: class, interface, or enum expected
package pack1;

Java source file structure:

http://www.durgasoft.com

JAVA Means DURGA SIR

135 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

All the following are valid java Programs.

Note: An empty source file is a valid java Program.

Class Modifiers

Whenever we are writing our own classes compulsory we have to provide some
information about our class to the jvm.

Like

1. Whether this class can be accessible from anywhere or not.
2. Whether child class creation is possible or not.
3. Whether object creation is possible or not etc.

We can specify this information by using the corresponding modifiers.

The only applicable modifiers for Top Level classes are:

1. Public
2. Default
3. Final
4. Abstract
5. Strictfp

If we are using any other modifier we will get compile time error.

http://www.durgasoft.com

JAVA Means DURGA SIR

136 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:
private class Test
{
public static void main(String args[]){
int i=0;
for(int j=0;j<3;j++)
{
i=i+j;
}
System.out.println(i);
}}
OUTPUT:
Compile time error.
D:\Java>javac Test.java
Test.java:1: modifier private not allowed here
private class Test

But For the inner classes the following modifiers are allowed.

Diagram:

What is the difference between access specifier and access modifier ?

http://www.durgasoft.com

JAVA Means DURGA SIR

137 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 In old languages 'C' (or) 'C++' public, private, protected, default are considered
as access specifiers and all the remaining are considered as access modifiers.

 But in java there is no such type of division all are considered as access
modifiers.

Public Classes:

If a class declared as public then we can access that class from anywhere. With in the
package or outside the package.

Example:
Program1:
package pack1;
public class Test
{
public void methodOne(){
System.out.println("test class methodone is executed");
}}
Compile the above Program:
D:\Java>javac -d . Test.java
Program2:
package pack2;
import pack1.Test;
class Test1
{
public static void main(String args[]){
Test t=new Test();
t.methodOne();
}}
OUTPUT:
D:\Java>javac -d . Test1.java
D:\Java>java pack2.Test1
Test class methodone is executed.

If class Test is not public then while compiling Test1 class we will get compile time error
saying pack1.Test is not public in pack1; cannot be accessed from outside package.

Default Classes:

If a class declared as the default then we can access that class only within the current
package hence default access is also known as "package level access".

Example:

Program 1:
package pack1;
class Test
{
public void methodOne(){
System.out.println("test class methodone is executed");
}}
Program 2:

http://www.durgasoft.com

JAVA Means DURGA SIR

138 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

package pack1;
import pack1.Test;
class Test1
{
public static void main(String args[]){
Test t=new Test();
t.methodOne();
}}
OUTPUT:
D:\Java>javac -d . Test.java
D:\Java>javac -d . Test1.java
D:\Java>java pack1.Test1
Test class methodone is executed

Final Modifier:

Final is the modifier applicable for classes, methods and variables.

Final Methods:

 Whatever the methods parent has by default available to the child.
 If the child is not allowed to override any method, that method we have to

declare with final in parent class. That is final methods cannot overridden.

Example:

Program 1:
class Parent
{
public void property(){
System.out.println("cash+gold+land");
}
public final void marriage(){
System.out.println("subbalakshmi");
}}
Program 2:
class child extends Parent
{
public void marriage(){
System.out.println("Thamanna");
}}
OUTPUT:
Compile time error.
D:\Java>javac Parent.java
D:\Java>javac child.java
child.java:3: marriage() in child cannot override marriage() in Parent;
overridden method is final
public void marriage(){

Final Class:

http://www.durgasoft.com

JAVA Means DURGA SIR

139 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

If a class declared as the final then we cann't creates the child class that is inheritance
concept is not applicable for final classes.

Example:

Program 1:
final class Parent
{
}
Program 2:
class child extends Parent
{
}
OUTPUT:
Compile time error.
D:\Java>javac Parent.java
D:\Java>javac child.java
child.java:1: cannot inherit from final Parent
class child extends Parent

Note: Every method present inside a final class is always final by default whether we are
declaring or not. But every variable present inside a final class need not be final.

Example:
final class parent
{
static int x=10;
static
{
x=999;
}}

The main advantage of final keyword is we can achieve security.
Whereas the main disadvantage is we are missing the key benefits of oops:
polymorsim (because of final methods), inheritance (because of final classes) hence if
there is no specific requirement never recommended to use final keyboard.

Abstract Modifier:

Abstract is the modifier applicable only for methods and classes but not for variables.

Abstract Methods:

Even though we don't have implementation still we can declare a method with abstract
modifier.
That is abstract methods have only declaration but not implementation.
Hence abstract method declaration should compulsory ends with semicolon.

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

140 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Child classes are responsible to provide implementation for parent class abstract
methods.

Example:

Program:

http://www.durgasoft.com

JAVA Means DURGA SIR

141 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 The main advantage of abstract methods is , by declaring abstract method in
parent class we can provide guide lines to the child class such that which
methods they should compulsory implement.

 Abstract method never talks about implementation whereas if any modifier talks
about implementation then the modifier will be enemy to abstract and that is
always illegal combination for methods.

The following are the various illegal combinations for methods.

Diagram:

All the 6 combinations are illegal.

Abstract class:

For any java class if we are not allow to create an object such type of class we have to
declare with abstract modifier that is for abstract class instantiation is not possible.

http://www.durgasoft.com

JAVA Means DURGA SIR

142 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:
abstract class Test
{
public static void main(String args[]){
Test t=new Test();
}}
Output:
Compile time error.
D:\Java>javac Test.java
Test.java:4: Test is abstract; cannot be instantiated
Test t=new Test();

What is the difference between abstract class and abstract method ?

 If a class contain at least on abstract method then compulsory the corresponding
class should be declare with abstract modifier. Because implementation is not
complete and hence we can't create object of that class.

 Even though class doesn't contain any abstract methods still we can declare the
class as abstract that is an abstract class can contain zero no of abstract methods
also.

Example1: HttpServlet class is abstract but it doesn't contain any abstract method.
Example2: Every adapter class is abstract but it doesn't contain any abstract method.

Example1:
class Parent
{
public void methodOne();
}
Output:
Compile time error.
D:\Java>javac Parent.java
Parent.java:3: missing method body, or declare abstract
public void methodOne();
Example2:
class Parent
{
public abstract void methodOne(){}
}
Output:
Compile time error.
Parent.java:3: abstract methods cannot have a body
public abstract void methodOne(){}
Example3:
class Parent
{
public abstract void methodOne();
}
Output:
Compile time error.
D:\Java>javac Parent.java

http://www.durgasoft.com

JAVA Means DURGA SIR

143 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Parent.java:1: Parent is not abstract and does not
 override abstract method methodOne() in Parent
class Parent

If a class extends any abstract class then compulsory we should provide implementation
for every abstract method of the parent class otherwise we have to declare child class as
abstract.

Example:
abstract class Parent
{
public abstract void methodOne();
public abstract void methodTwo();
}
class child extends Parent
{
public void methodOne(){}
}
Output:
Compile time error.
D:\Java>javac Parent.java
Parent.java:6: child is not abstract and does not
 override abstract method methodTwo() in Parent
class child extends Parent

If we declare class child as abstract then the code compiles fine but child of child is
responsible to provide implementation for methodTwo().

What is the difference between final and abstract ?

 For abstract methods compulsory we should override in the child class to
provide implementation. Whereas for final methods we can't override hence
abstract final combination is illegal for methods.

 For abstract classes we should compulsory create child class to provide
implementation whereas for final class we can't create child class. Hence final
abstract combination is illegal for classes.

http://www.durgasoft.com

JAVA Means DURGA SIR

144 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 Final class cannot contain abstract methods whereas abstract class can contain
final method.

Example:

Note:

Usage of abstract methods, abstract classes and interfaces is always good Programming
practice.

Strictfp:

 strictfp is the modifier applicable for methods and classes but not for variables.
 Strictfp modifier introduced in 1.2 versions.
 Usually the result of floating point of arithmetic is varing from platform to

platform , to overcome this problem we should use strictfp modifier.
 If a method declare as the Strictfp then all the floating point calculations in that

method has to follow IEEE754 standard, So that we will get platform
independent results.

http://www.durgasoft.com

JAVA Means DURGA SIR

145 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

If a class declares as the Strictfp then every concrete method(which has body) of that
class has to follow IEEE754 standard for floating point arithmetic, so we will get
platform independent results.

What is the difference between abstract and strictfp ?

 Strictfp method talks about implementation where as abstract method never
talks about implementation hence abstract, strictfp combination is illegal for
methods.

 But we can declare a class with abstract and strictfp modifier simultaneously.
That is abstract strictfp combination is legal for classes but illegal for methods.

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

146 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Member modifiers:

Public members:

If a member declared as the public then we can access that member from anywhere
"but the corresponding class must be visible" hence before checking member visibility
we have to check class visibility.

Example:

Program 1:
package pack1;
class A
{
public void methodOne(){
System.out.println("a class method");
}}
D:\Java>javac -d . A.java
Program 2:
package pack2;
import pack1.A;
class B
{
public static void main(String args[]){
A a=new A();
a.methodOne();

http://www.durgasoft.com

JAVA Means DURGA SIR

147 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

}}
Output:
Compile time error.
D:\Java>javac -d . B.java
B.java:2: pack1.A is not public in pack1;
 cannot be accessed from outside package
import pack1.A;

In the above Program even though methodOne() method is public we can't access from
class B because the corresponding class A is not public that is both classes and methods
are public then only we can access.

Default member:

If a member declared as the default then we can access that member only within the
current package hence default member is also known as package level access.

Example 1:

Program 1:
package pack1;
class A
{
void methodOne(){
System.out.println("methodOne is executed");
}}
Program 2:
package pack1;
import pack1.A;
class B
{
public static void main(String args[]){
A a=new A();
a.methodOne();
}}
Output:
D:\Java>javac -d . A.java
D:\Java>javac -d . B.java
D:\Java>java pack1.B
methodOne is executed
Example 2:

Program 1:
package pack1;
class A
{
void methodOne(){
System.out.println("methodOne is executed");
}}
Program 2:
package pack2;
import pack1.A;
class B
{

http://www.durgasoft.com

JAVA Means DURGA SIR

148 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

public static void main(String args[]){
A a=new A();
a.methodOne();
}}
Output:
Compile time error.
D:\Java>javac -d . A.java
D:\Java>javac -d . B.java
B.java:2: pack1.A is not public in pack1; cannot be accessed from outside
package
import pack1.A;

Private members:

 If a member declared as the private then we can access that member only with in
the current class.

 Private methods are not visible in child classes where as abstract methods should
be visible in child classes to provide implementation hence private, abstract
combination is illegal for methods.

Protected members:

 If a member declared as the protected then we can access that member within
the current package anywhere but outside package only in child classes.
Protected=default+kids.

 We can access protected members within the current package anywhere either
by child reference or by parent reference

 But from outside package we can access protected members only in child classes
and should be by child reference only that is we can't use parent reference to call
protected members from outside package.

Example:

Program 1:
package pack1;
public class A
{
protected void methodOne(){
System.out.println("methodOne is executed");
}}

http://www.durgasoft.com

JAVA Means DURGA SIR

149 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Program 2:
package pack1;
class B extends A
{
public static void main(String args[]){
A a=new A();
a.methodOne();
B b=new B();
b.methodOne();
A a1=new B();
a1.methodOne();
}}
Output:
D:\Java>javac -d . A.java
D:\Java>javac -d . B.java
D:\Java>java pack1.B
methodOne is executed
methodOne is executed
methodOne is executed
Example 2:

http://www.durgasoft.com

JAVA Means DURGA SIR

150 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Compression of private, default, protected and public:

visibility private default protected public

1)With in the same class

2)From child class of same package

3)From non-child class of same
package

4)From child class of outside
package

5)From non-child class of outside
package

http://www.durgasoft.com

JAVA Means DURGA SIR

151 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 The least accessible modifier is private.
 The most accessible modifier is public.

Private<default<protected<public

Recommended modifier for variables is private where as recommended modifier for
methods is public.

Final variables:

Final instance variables:

 If the value of a variable is varied from object to object such type of variables are
called instance variables.

 For every object a separate copy of instance variables will be created.

DIAGRAM:

For the instance variables it is not required to perform initialization explicitly jvm will
always provide default values.
Example:
class Test
{
int i;
public static void main(String args[]){
Test t=new Test();
System.out.println(t.i);
}}
Output:
D:\Java>javac Test.java
D:\Java>java Test
0

http://www.durgasoft.com

JAVA Means DURGA SIR

152 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

If the instance variable declared as the final compulsory we should perform
initialization explicitly and JVM won't provide any default values.
whether we are using or not otherwise we will get compile time error.

Example:

Program 1:
class Test
{
int i;
}
Output:
D:\Java>javac Test.java
D:\Java>
Program 2:
class Test
{
final int i;
}
Output:
Compile time error.
D:\Java>javac Test.java
Test.java:1: variable i might not have been initialized
class Test
Rule:

For the final instance variables we should perform initialization before constructor
completion. That is the following are various possible places for this.

1) At the time of declaration:

Example:
class Test
{
 final int i=10;
}
Output:
D:\Java>javac Test.java

http://www.durgasoft.com

JAVA Means DURGA SIR

153 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

D:\Java>

2) Inside instance block:

Example:
class Test
{
final int i;
{
i=10;
}}
Output:
D:\Java>javac Test.java
D:\Java>

3) Inside constructor:

Example:
class Test
{
final int i;
Test()
{
i=10;
}}
Output:
D:\Java>javac Test.java
D:\Java>

If we are performing initialization anywhere else we will get compile time error.

Example:
class Test
{
final int i;
public void methodOne(){
i=10;
}}
Output:
Compile time error.
D:\Java>javac Test.java
Test.java:5: cannot assign a value to final variable i
i=10;

Final static variables:

 If the value of a variable is not varied from object to object such type of variables
is not recommended to declare as the instance variables. We have to declare
those variables at class level by using static modifier.

 In the case of instance variables for every object a seperate copy will be created
but in the case of static variables a single copy will be created at class level and
shared by every object of that class.

http://www.durgasoft.com

JAVA Means DURGA SIR

154 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 For the static variables it is not required to perform initialization explicitly jvm
will always provide default values.

Example:
class Test
{
static int i;
public static void main(String args[]){
System.out.println("value of i is :"+i);
}}
Output:
D:\Java>javac Test.java
D:\Java>java Test
Value of i is: 0

If the static variable declare as final then compulsory we should perform initialization
explicitly whether we are using or not otherwise we will get compile time error.(The
JVM won't provide any default values)

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

155 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Rule:

For the final static variables we should perform initialization before class loading
completion otherwise we will get compile time error. That is the following are possible
places.

1) At the time of declaration:

Example:
class Test
{
final static int i=10;
}
Output:
D:\Java>javac Test.java
D:\Java>

2) Inside static block:

Example:
class Test
{
final static int i;
static
{
i=10;
}}
Output:
Compile successfully.

If we are performing initialization anywhere else we will get compile time error.

Example:
class Test
{

http://www.durgasoft.com

JAVA Means DURGA SIR

156 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

final static int i;
public static void main(String args[]){
i=10;
}}
Output:
Compile time error.
D:\Java>javac Test.java
Test.java:5: cannot assign a value to final variable i
i=10;

Final local variables:

 To meet temporary requirement of the Programmer sometime we can declare
the variable inside a method or block or constructor such type of variables are
called local variables.

 For the local variables jvm won't provide any default value compulsory we
should perform initialization explicitly before using that variable.

Example:
class Test
{
public static void main(String args[]){
int i;
System.out.println("hello");
}}
Output:
D:\Java>javac Test.java
D:\Java>java Test
Hello
Example:
class Test
{
public static void main(String args[]){
int i;
System.out.println(i);
}}
Output:
Compile time error.
D:\Java>javac Test.java
Test.java:5: variable i might not have been initialized
System.out.println(i);

Even though local variable declared as the final before using only we should perform
initialization.

Example:
class Test
{
public static void main(String args[]){
final int i;
System.out.println("hello");
}}
Output:
D:\Java>javac Test.java

http://www.durgasoft.com

JAVA Means DURGA SIR

157 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

D:\Java>java Test
hello

Note: The only applicable modifier for local variables is final if we are using any other
modifier we will get compile time error.

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

158 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Output:
Compile time error.
D:\Java>javac Test.java
Test.java:5: illegal start of expression
private int x=10;

Formal parameters:

 The formal parameters of a method are simply acts as local variables of that
method hence it is possible to declare formal parameters as final.

 If we declare formal parameters as final then we can't change its value within the
method.

http://www.durgasoft.com

JAVA Means DURGA SIR

159 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

 For instance and static variables JVM will provide default values but if instance
and static declared as final JVM won't provide default value compulsory we
should perform initialization whether we are using or not .

 For the local variables JVM won't provide any default values we have to
perform explicitly before using that variables , this rule is same whether local
variable final or not.

Static modifier:

 Static is the modifier applicable for methods, variables and blocks.
 We can't declare a class with static but inner classes can be declaring as the

static.
 In the case of instance variables for every object a separate copy will be created

but in the case of static variables a single copy will be created at class level and
shared by all objects of that class..

http://www.durgasoft.com

JAVA Means DURGA SIR

160 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

Output:
D:\Java>javac Test.java
D:\Java>java Test
888.....20

 Instance variables can be accessed only from instance area directly and we can't
access from static area directly.

 But static variables can be accessed from both instance and static areas directly.

1) Int x=10;

2) Static int x=10;

http://www.durgasoft.com

JAVA Means DURGA SIR

161 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

3) Public void methodOne(){
 System.out.println(x);
 }

4) Public static void methodOne(){
 System.out.println(x);
 }

Which are the following declarations are allow within the same class simultaneously ?
a) 1 and 3

Example:
class Test
{
int x=10;
public void methodOne(){
System.out.println(x);
}}
Output:
Compile successfully.

b) 1 and 4
Example:
class Test
{
int x=10;
public static void methodOne(){
System.out.println(x);
}}
Output:
Compile time error.
D:\Java>javac Test.java
Test.java:5: non-static variable x cannot be referenced from a static
context
System.out.println(x);

c) 2 and 3
Example:
class Test
{
static int x=10;
public void methodOne(){
System.out.println(x);
}}
Output:
Compile successfully.

d) 2 and 4
Example:
class Test
{
static int x=10;
public static void methodOne(){
System.out.println(x);
}}

http://www.durgasoft.com

JAVA Means DURGA SIR

162 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Output:
Compile successfully.

e) 1 and 2
Example:
class Test
{
int x=10;
static int x=10;
}
Output:
Compile time error.
D:\Java>javac Test.java
Test.java:4: x is already defined in Test
static int x=10;

f) 3 and 4

Example:
class Test{
public void methodOne(){
System.out.println(x);
}
public static void methodOne(){
System.out.println(x);
}}
Output:
Compile time error.
D:\Java>javac Test.java
Test.java:5: methodOne() is already defined in Test
public static void methodOne(){
For static methods implementation should be available but for abstract methods
implementation is not available hence static abstract combination is illegal for methods.

case 1:

Overloading concept is applicable for static method including main method also.But
JVM will always call String[] args main method .
The other overloaded method we have to call explicitly then it will be executed just like
a normal method call .

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

163 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Output :
String() method is called

case 2:

Inheritance concept is applicable for static methods including main() method hence
while executing child class, if the child doesn't contain main() method then the parent
class main method will be executed.

Example:
class Parent{
public static void main(String args[]){
System.out.println("parent main() method called");
}
}
class child extends Parent{
}
Output:

http://www.durgasoft.com

JAVA Means DURGA SIR

164 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

165 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

JAVA Means DURGA SIR

166 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Output:

 It seems to be overriding concept is applicable for static methods but it is not
overriding it is method hiding.

Native modifier:

 Native is a modifier applicable only for methods but not for variables and
classes.

 The methods which are implemented in non java are called native methods or
foreign methods.

The main objectives of native keyword are:

 To improve performance of the system.
 To use already existing legacy non-java code.
 To achieve machine level communication(memory level - address)
 Pseudo code to use native keyword in java.

To use native keyword:

http://www.durgasoft.com

JAVA Means DURGA SIR

167 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Pseudo code:

For native methods implementation is already available and we are not responsible to
provide implementation hence native method declaration should compulsory ends with
semicolon.

http://www.durgasoft.com

JAVA Means DURGA SIR

168 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

o Public native void methodOne()----invalid
o Public native void methodOne();---valid

 For native methods implementation is already available where as for abstract
methods implementation should not be available child class is responsible to
provide that, hence abstract native combination is illegal for methods.

 We can't declare a native method as strictfp because there is no guaranty
whether the old language supports IEEE754 standard or not. That is native
strictfp combination is illegal for methods.

 For native methods inheritance, overriding and overloading concepts are
applicable.

 The main advantage of native keyword is performence will be improves.
 The main disadvantage of native keyword is usage of native keyword in java

breaks platform independent nature of java language.

Synchronized:

1. Synchronized is the modifier applicable for methods and blocks but not for
variables and classes.

2. If a method or block declared with synchronized keyword then at a time only one
thread is allow to execute that method or block on the given object.

3. The main advantage of synchronized keyword is we can resolve data
inconsistency problems.

4. But the main disadvantage is it increases waiting time of the threads and effects
performance of the system. Hence if there is no specific requirement never
recommended to use synchronized keyword.

For syncronized methods compulsory implementation should be available , but for
abstract methods implementation won't be available , Hence abstract - syncronized
combination is illegal for methods.

Transient modifier:

1. Transient is the modifier applicable only for variables but not for methods and
classes.

2. At the time of serialization if we don't want to serialize the value of a particular
variable to meet the security constraints then we should declare that variable
with transient modifier.

3. At the time of serialization jvm ignores the original value of the transient
variable and save default value that is transient means "not to serialize".

4. Static variables are not part of object state hence serialization concept is not
applicable for static variables duo to this declaring a static variable as transient
there is no use.

5. Final variables will be participated into serialization directly by their values due
to this declaring a final variable as transient there is no impact.

Volatile modifier:

http://www.durgasoft.com

JAVA Means DURGA SIR

169 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

1. Volatile is the modifier applicable only for variables but not for classes and
methods.

2. If the value of variable keeps on changing such type of variables we have to
declare with volatile modifier.

3. If a variable declared as volatile then for every thread a separate local copy will
be created by the jvm, all intermediate modifications performed by the thread
will takes place in the local copy instead of master copy.

4. Once the value got finalized before terminating the thread that final value will be
updated in master copy.

5. The main advantage of volatile modifier is we can resolve data inconsistency
problems, but creating and maintaining a separate copy for every thread
increases complexity of the Programming and effects performance of the system.
Hence if there is no specific requirement never recommended to use volatile
modifier and it's almost outdated.

6. Volatile means the value keep on changing where as final means the value never
changes hence final volatile combination is illegal for variables.

Summary of modifier:

Modifiers Classes

M et V
a

ri Bl oc

Interfaces enum

Co ns tr

http://www.durgasoft.com

JAVA Means DURGA SIR

170 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Conclusions:

 The Only Applicable Modifiers for Constructors are public, private, protected, and

<default>.
 The Only Applicable Modifiers for Local Variable is final.
 The Only Modifier which is applicable for Classes but Not for Interfaces is final.
 The Modifiers which are Applicable for Classes but Not for enum are final and

abstract.
 The Modifiers which are Applicable for Inner Classes but Not for Outer Classes are

public, protected, and static.
 The Only Modifier which is Applicable for Methods is native.
 The Modifiers which are Applicable for Variables are transient and volatile.

O
ut

er

In
ne

r

O
ut

er

in
ne

r

O
ut

er

In
ne

r

public √ √ √ √ √ √ √ √ √

private √ √ √ √ √ √

protected √ √ √ √ √ √

<default> √ √ √ √ √ √ √ √ √

final √ √ √ √

static √ √ √ √ √ √

synchronized √ √

abstract √ √ √ √ √

native √

strictfp √ √ √ √ √ √ √

transient √

volatile √

http://www.durgasoft.com

JAVA Means DURGA SIR

171 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Java Modifiers Important Questions

1) For the Top Level Classes which Modifiers are Allowed?

2) Is it Possible to Declare a Class as static, private, and protected?

3) What are Extra Modifiers Applicable for Inner Classes when compared with Outer

Classes?

4) What is a final Class?

5) Explain the Differences between final, finally and finalize?

6) Is Every Method Present in final Class is final?

7) Is Every Variable Present Inside a final Class is final?

8) What is abstract Class?

9) What is abstract Method?

10) If a Class contain at least One abstract Method is it required to declared that Class

Compulsory abstract?

11) If a Class doesn’t contain any abstract Methods is it Possible to Declare that Class as
abstract?

12) Whenever we are extending abstract Class is it Compulsory required to Provide

Implementation for Every abstract Method of that Class?

13) Is final Class can contain abstract Method?

14) Is abstract Class can contain final Methods?

15) Can You give Example for abstract Class which doesn’t contain any abstract
Method?

http://www.durgasoft.com

JAVA Means DURGA SIR

172 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

16) Which of the following Modifiers Combinations are Legal for Methods?
 public – static
 static – abstract
 abstract - final
 final - synchronized
 synchronized - native
 native – abstract

17) Which of the following Modifiers Combinations are Legal for Classes?
 public - final
 final - abstract
 abstract - strictfp
 strictfp – public

18) What is the Difference between abstract Class and Interface?

19) What is strictfp Modifier?

20) Is it Possible to Declare a Variable with strictfp?

21) abstract - strictfp Combination, is Legal for Classes OR Methods?

22) Is it Possible to Override a native Method?

23) What is the Difference between Instance and Static Variable?

24) What is the Difference between General Static Variable and final Static Variable?

25) Which Modifiers are Applicable for Local Variable?

26) When the Static Variables will be Created?

27) What are Various Memory Locations of Instance Variables, Local Variables and

Static Variables?

28) Is it Possible to Overload a main()?

29) Is it Possible to Override Static Methods?

30) What is native Key Word and where it is Applicable?

31) What is the Main Advantage of the native Key Word?

32) If we are using native Modifier how we can Maintain Platform Independent Nature?

33) How we can Declare a native Method?

34) Is abstract Method can contain Body?

http://www.durgasoft.com

JAVA Means DURGA SIR

173 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

35) What is synchronized Key Word where we can Apply?

36) What are Advantages and Disadvantages of synchronized Key Word?

37) Which Modifiers are the Most Dangerous in Java?

38) What is Serialization and Explain how its Process?

39) What is Deserialization?

40) By using which Classes we can Achieve Serialization and Deserialization?

41) What is Serializable interface and Explain its Methods?

42) What is a Marker Interface and give an Example?

43) Without having any Method in Serializable Interface, how we can get Serializable

Ability for Our Object?

44) What is the Purpose of transient Key Word and Explain its Advantages?

45) Is it Possible to Serialize Every Java Object?

46) Is it Possible to Declare a Method, a Class with transient?

47) If we Declare Static Variable with transient is there any Impact?

48) What is the Impact of declaring final Variable a transient?

49) What is volatile Variable?

50) Is it Possible to Declare a Class OR a Method with volatile?

51) What is the Advantage and Disadvantage of volatile Modifier?

Note :

1. The modifiers which are applicable for inner classes but not for outer classes are
private, protected, static.

2. The modifiers which are applicable only for methods native.
3. The modifiers which are applicable only for variables transient and volatile.
4. The modifiers which are applicable for constructor public, private, protected,

default.
5. The only applicable modifier for local variables is final.
6. The modifiers which are applicable for classes but not for enums are final ,

abstract.
7. The modifiers which are applicable for classes but not for interface are final.

http://www.durgasoft.com

JAVA Means DURGA SIR

174 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Interfaces:
Def1: Any service requirement specification (srs) is called an interface.
Example1: Sun people responsible to define JDBC API and database vendor will
provide implementation for that.

Diagram:

http://www.durgasoft.com

JAVA Means DURGA SIR

175 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example2: Sun people define Servlet API to develop web applications web server
vendor is responsible to provide implementation.

Diagram:

Def2: From the client point of view an interface define the set of services what is
expecting. From the service provider point of view an interface defines the set of
services what is offering. Hence an interface is considered as a contract between client
and service provider.
Example: ATM GUI screen describes the set of services what bank people offering, at

http://www.durgasoft.com

JAVA Means DURGA SIR

176 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

the same time the same GUI screen the set of services what customer is expecting hence
this GUI screen acts as a contract between bank and customer.

Def3: Inside interface every method is always abstract whether we are declaring or not
hence interface is considered as 100% pure abstract class.

Summery def: Any service requirement specification (SRS) or any contract between
client and service provider or 100% pure abstract classes is considered as an interface.

Declaration and implementation of an interface:

Note1:

Whenever we are implementing an interface compulsory for every method of that
interface we should provide implementation otherwise we have to declare class as
abstract in that case child class is responsible to provide implementation for remaining
methods.

Note2:

Whenever we are implementing an interface method compulsory it should be declared
as public otherwise we will get compile time error.

Example:
interface Interf
{
void methodOne();
void methodTwo();
}

http://www.durgasoft.com

JAVA Means DURGA SIR

177 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

class SubServiceProvider extends ServiceProvider
{
}
Output:
Compile time error.
D:\Java>javac SubServiceProvider.java
SubServiceProvider.java:1:
SubServiceProvider is not abstract and does not override
 abstract method methodTwo() in Interf
class SubServiceProvider extends ServiceProvider

Extends vs implements:

A class can extends only one class at a time.

Example:
class One{
public void methodOne(){
}
}
class Two extends One{
}

A class can implements any no. Of interfaces at a time.

http://www.durgasoft.com

JAVA Means DURGA SIR

178 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:
interface One{
public void methodOne();
}
interface Two{
public void methodTwo();
}
class Three implements One,Two{
public void methodOne(){
}
public void methodTwo(){
}
}

A class can extend a class and can implement any no. Of interfaces simultaneously.

interface One{
void methodOne();
}
class Two
{
public void methodTwo(){
}
}
class Three extends Two implements One{
public void methodOne(){
}
}

An interface can extend any no. Of interfaces at a time.

Example:
interface One{
void methodOne();
}
interface Two{
void methodTwo();
}
interface Three extends One,Two
{

http://www.durgasoft.com

JAVA Means DURGA SIR

179 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

}
Which of the following is true?

1. A class can extend any no.Of classes at a time.
2. An interface can extend only one interface at a time.
3. A class can implement only one interface at a time.
4. A class can extend a class and can implement an interface but not both

simultaneously.
5. An interface can implement any no.Of interfaces at a time.
6. None of the above.

Ans: 6

Consider the expression X extends Y for which of the possibility of X and Y this
expression is true?

1. Both x and y should be classes.
2. Both x and y should be interfaces.
3. Both x and y can be classes or can be interfaces.
4. No restriction.

Ans: 3

X extends Y, Z ?
X, Y, Z should be interfaces.

X extends Y implements Z ?
X, Y should be classes.
Z should be interface.

X implements Y, Z ?
X should be class.
Y, Z should be interfaces.

X implements Y extend Z ?

Example:
interface One{
}
class Two {
}
class Three implements One extends Two{
}
Output:
Compile time error.
D:\Java>javac Three.java
Three.java:5: '{' expected
class Three implements One extends Two{

http://www.durgasoft.com

JAVA Means DURGA SIR

180 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Interface methods:

Every method present inside interface is always public and abstract whether we are
declaring or not. Hence inside interface the following method declarations are equal.

void methodOne();
public Void methodOne();
abstract Void methodOne(); Equal
public abstract Void methodOne();

public: To make this method available for every implementation class.
abstract: Implementation class is responsible to provide implementation .

As every interface method is always public and abstract we can't use the following
modifiers for interface methods.
Private, protected, final, static, synchronized, native, strictfp.

Inside interface which method declarations are valid?

1. public void methodOne(){}
2. private void methodOne();
3. public final void methodOne();
4. public static void methodOne();
5. public abstract void methodOne();

Ans: 5

Interface variables:

 An interface can contain variables
 The main purpose of interface variables is to define requirement level constants.
 Every interface variable is always public static and final whether we are

declaring or not.

http://www.durgasoft.com

JAVA Means DURGA SIR

181 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:
interface interf
{
int x=10;
}

public: To make it available for every implementation class.
static: Without existing object also we have to access this variable.
final: Implementation class can access this value but cannot modify.

Hence inside interface the following declarations are equal.

int x=10;
public int x=10;
static int x=10;
final int x=10; Equal
public static int x=10;
public final int x=10;
static final int x=10;
public static final int x=10;

 As every interface variable by default public static final we can't declare with the
following modifiers.

o Private
o Protected
o Transient
o Volatile

 For the interface variables compulsory we should perform initialization at the
time of declaration only otherwise we will get compile time error.

Example:
interface Interf
{
int x;
}
Output:
Compile time error.
D:\Java>javac Interf.java
Interf.java:3: = expected
int x;
Which of the following declarations are valid inside interface ?

1. int x;
2. private int x=10;
3. public volatile int x=10;
4. public transient int x=10;
5. public static final int x=10;

Ans: 5

Interface variables can be access from implementation class but cannot be modified.

http://www.durgasoft.com

JAVA Means DURGA SIR

182 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:
interface Interf
{
int x=10;
}

Example 1:

Example 2:
class Test implements Interf
{
public static void main(String args[]){
int x=20;
//here we declaring the variable x.
System.out.println(x);
}
}
Output:
D:\Java>javac Test.java
D:\Java>java Test
20\

http://www.durgasoft.com

JAVA Means DURGA SIR

183 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Interface naming conflicts:

Method naming conflicts:

Case 1:

If two interfaces contain a method with same signature and same return type in the
implementation class only one method implementation is enough.

Example 1:
interface Left
{
public void methodOne();
}
Example 2:
interface Right
{
public void methodOne();
}
Example 3:
class Test implements Left,Right
{
public void methodOne()
{
}}
Output:
D:\Java>javac Left.java
D:\Java>javac Right.java
D:\Java>javac Test.java
Case 2:

if two interfaces contain a method with same name but different arguments in the
implementation class we have to provide implementation for both methods and these
methods acts as a overloaded methods

http://www.durgasoft.com

JAVA Means DURGA SIR

184 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example 1:
interface Left
{
public void methodOne();
}
Example 2:
interface Right
{
public void methodOne(int i);
}
Example 3:
class Test implements Left,Right
{
public void methodOne()
{
}
public void methodOne(int i)
{
}}
Output:
D:\Java>javac Left.java
D:\Java>javac Right.java
D:\Java>javac Test.java
Case 3:

If two interfaces contain a method with same signature but different return types then it
is not possible to implement both interfaces simultaneously.

Example 1:
interface Left
{
public void methodOne();

http://www.durgasoft.com

JAVA Means DURGA SIR

185 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

}
Example 2:
interface Right
{
public int methodOne(int i);
}

We can't write any java class that implements both interfaces simultaneously.

Is a java class can implement any no. Of interfaces simultaneously ?
Yes, except if two interfaces contains a method with same signature but different return
types.

Variable naming conflicts:

Two interfaces can contain a variable with the same name and there may be a chance
variable naming conflicts but we can resolve variable naming conflicts by using
interface names.

Example 1:
interface Left
{
int x=888;
}
Example 2:
interface Right
{
int x=999;
}
Example 3:
class Test implements Left,Right
{
public static void main(String args[]){
//System.out.println(x);
System.out.println(Left.x);
System.out.println(Right.x);
}
}
Output:
D:\Java>javac Left.java
D:\Java>javac Right.java
D:\Java>javac Test.java
D:\Java>java Test
888
999

Marker interface:

If an interface doesn't contain any methods and by implementing that interface if our
objects will get some ability such type of interfaces are called Marker interface (or) Tag
interface (or) Ability interface.
Example:

http://www.durgasoft.com

JAVA Means DURGA SIR

186 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Serializable
Cloneable
RandomAccess These are marked for some ability
SingleThreadModel
 .
 .
 .
 .

Example 1:

By implementing Serilaizable interface we can send that object across the network and
we can save state of an object into a file.

Example 2:

By implementing SingleThreadModel interface Servlet can process only one client
request at a time so that we can get "Thread Safety".

Example 3:

By implementing Cloneable interface our object is in a position to provide exactly
duplicate cloned object.

Without having any methods in marker interface how objects will get ability ?
Internally JVM is responsible to provide required ability.

Why JVM is providing the required ability in marker interfaces ?
To reduce complexity of the programming.

Is it possible to create our own marker interface ?
Yes, but customization of JVM must be required.
Ex : Sleepable , Jumpable ,

http://www.durgasoft.com

JAVA Means DURGA SIR

187 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Adapter class:

 Adapter class is a simple java class that implements an interface only with empty
implementation for every method.

 If we implement an interface directly for each and every method compulsory we
should provide implementation whether it is required or not. This approach
increases length of the code and reduces readability.

Example 1:
interface X{
void m1();
void m2();
void m3();
void m4();
 //.
 //.
 //.
 //.
void m5();
}
Example 2:
class Test implements X{
public void m3(){
System.out.println("m3() method is called");
}
public void m1(){}
public void m2(){}
public void m4(){}
public void m5(){}
}

 We can resolve this problem by using adapter class.
 Instead of implementing an interface if we can extend adapter class we have to

provide implementation only for required methods but not for all methods of
that interface.

 This approach decreases length of the code and improves readability.

Example 1:
abstract class AdapterX implements X{
public void m1(){}
public void m2(){}
public void m3(){}
public void m4(){}
 //.
 //.
 //.
public void m1000(){}
}
Example 2:
public class Test extend AdapterX{{
public void m3(){
}}

http://www.durgasoft.com

JAVA Means DURGA SIR

188 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

Generic Servlet simply acts as an adapter class for Servlet interface.
Note : marker interface and Adapter class are big utilities to the programmer to
simplify programming.

What is the difference between interface, abstract class and concrete class?
When we should go for interface, abstract class and concrete class?

 If we don't know anything about implementation just we have requirement
specification then we should go for interface.

 If we are talking about implementation but not completely (partial
implementation) then we should go for abstract class.

 If we are talking about implementation completely and ready to provide service
then we should go for concrete class.

http://www.durgasoft.com

JAVA Means DURGA SIR

189 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Example:

What is the Difference between interface and abstract class ?

interface Abstract class

If we don't' know anything about
implementation just we have requirement
specification then we should go for interface.

If we are talking about implementation
but not completely (partial
implementation) then we should go for
abstract class.

Every method present inside interface is
always public and abstract whether we are
declaring or not.

Every method present inside abstract
class need not be public and abstract.

We can't declare interface methods with the
modifiers private, protected, final, static,
synchronized, native, strictfp.

There are no restrictions on abstract
class method modifiers.

Every interface variable is always public
static final whether we are declaring or not.

Every abstract class variable need not be
public static final.

Every interface variable is always public
static final we can't declare with the

There are no restrictions on abstract
class variable modifiers.

http://www.durgasoft.com

JAVA Means DURGA SIR

190 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

following modifiers. Private, protected,
transient, volatile.
For the interface variables compulsory we
should perform initialization at the time of
declaration otherwise we will get compile
time error.

It is not require to perform initialization
for abstract class variables at the time of
declaration.

Inside interface we can't take static and
instance blocks.

Inside abstract class we can take both
static and instance blocks.

Inside interface we can't take constructor. Inside abstract class we can take
constructor.

We can't create object for abstract class but abstract class can contain
constructor what is the need ?

abstract class constructor will be executed when ever we are creating child class object
to perform initialization of child object.

Example:
class Parent{
Parent()
{
System.out.println(this.hashCode());
}
}
class child extends Parent{
child(){
System.out.println(this.hashCode());
}
}
class Test{
public static void main(String args[]){
child c=new child();
System.out.println(c.hashCode());
}
}
Note : We can't create object for abstract class either directly or indirectly.

Every method present inside interface is abstract but in abstract class also we
can take only abstract methods then what is the need of interface concept ?

We can replace interface concept with abstract class. But it is not a good programming
practice. We are misusing the roll of abstract class. It may create performence problems
also.
(this is just like recruiting IAS officer for sweeping purpose)

http://www.durgasoft.com

JAVA Means DURGA SIR

191 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

If every thing is abstract then it is recommended to go for interafce.

Why abstract class can contain constructor where as interface doesn't contain
constructor ?

The main purpose of constructor is to perform initialization of an object i.e., provide
values for the instance variables, Inside interface every variable is always static and
there is no chance of existing instance variables. Hence constructor is not required for
interface.
But abstract class can contains instance variable which are required for the child object
to perform initialization for those instance variables constructor is required in the case
of abstract class.

http://www.durgasoft.com

JAVA Means DURGA SIR

192 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Interfaces Important Questions

1) What is Interface?

2) What is Difference between Interface and Abstract Class?

3) When we should Go for Interface and Abstract Class and Concrete Class?

4) What Modifiers Applicable for Interfaces?

5) Explain about Interface Variables and what Modifiers are Applicable for them?

6) Explain about Interface Methods and what Modifiers are Applicable for them?

7) Can Java Class implement any Number of Interfaces?

8) If 2 Interfaces contains a Method with Same Signature but different Return Types,

then how we can implement Both Interfaces Simultaneously?

9) Difference between extends and implements Key Word?

10) We cannot Create an Object of Abstract Class then what is Necessity of having
Constructor Inside Abstract Class?

11) What is a Marker Interface? Give an Example?

12) What is Adapter Class and Explain its Usage?

13) An Interface contains only Abstract Methods and an Abstract Class also can contain

only Abstract Methods then what is the Necessity of Interface?

14) In Your Previous Project where You used the following Marker Interface, Abstract
Class, Interface and Adapter Class?

http://www.durgasoft.com

JAVA Means DURGA SIR

193 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

The Purpose of Constructor is
 To Initialize an Object but Not to Create an Object.
 Whenever we are creating an Object after Object Creation automatically

Constructor will be executed to Initialize that Object.
 Object Creation by New Operator and then Initialization by Constructor.

 Before Constructor Only Object is Ready and Hence within the Constructor we can

Access Object Properties Like Hash Code.

 Whenever we are creating Child Class Object automatically Parent Constructor will

be executed but Parent Object won’t be created.
 The Purpose of Parent Constructor Execution is to Initialize Child Object Only. Of

Course for the Instance Variables which are inheriting from parent Class.

 Initialize an Object

Student s = new Student(“Durga”, 101);

 Object Creation

class Test {
 Test() {
 System.out.println(this); // Test@6e3d60
 System.out.println(this.hashCode()); //7224672

 }
 public static void main(String[] args) {
 Test t = new Test();
 }

}

http://www.durgasoft.com

JAVA Means DURGA SIR

194 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 In the Above Example whenever we are creating Child Object Both Parent and

Child Constructors will be executed for Child Object Purpose Only.
 In the Above Example we are Just creating Student Object but Both Person and

Student Constructor to Initialize Student Object Only.

http://www.durgasoft.com

JAVA Means DURGA SIR

195 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

 Whenever we are creating an Object automatically Constructor will be executed

but it May be One Constructor OR Multiple Constructors.
 Either Directly OR Indirectly we can’t Create Object for Abstract Class but Abstract

Class can contain Constructor what is the Need.
 Whenever we are creating Child Object Automatically Abstract Class Constructor

will be executed to Perform Initialization of Child Object for the Properties
whether inheriting from Abstract Class (Code Reusability).

 class Student extends Person {

 int rollno;
 int marks;
 Student(String name, int age, int height, int weight) {
 this.name = name;
 this.age = age;

Without abstract Class Constructor

http://www.durgasoft.com

JAVA Means DURGA SIR

196 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

abstract class Person {
 String name;
 int age;
 int height;
 int weight;
 public Person(String name, int age, int height, int weight) {
 super();
 this.name = name;
 this.age = age;

With abstract Class Constructor

http://www.durgasoft.com

JAVA Means DURGA SIR

197 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Any Way we can’t Create Object for Abstract Class and Interface. But Abstract
Class can contain Constructor but Interface doesn’t Why?

 The Main Purpose of Constructor is to Perform Initialization of an Object i.e. to

Provide Values for Instance Variables.
 Abstract Class can contain Instance Variables which are required for Child Class

Object to Perform Initialization of these Instance Variables Constructor is required
Inside Abstract Class.

 But Every Variable Present Inside Interface is Always public, static and final
whether we are declaring OR Not and Every Interface Variable we should Perform
Initialization at the Time of Declaration and Hence Inside Interface there is No
Chance of existing Instance Variable.

 Due to this Initialization of Instance Variables Concept Not Applicable for
Interfaces.

 Hence Constructor Concept Not required for Interface.

http://www.durgasoft.com

JAVA Means DURGA SIR

198 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Inside Interface we can take Only Abstract Methods. But in Abstract Class Also
we can take Only Abstract Methods Based on Our Requirement. Then what is
the Need of Interface? i.e. Is it Possible to Replace Interface Concept with
Abstract Class?

We can Replace Interface with Abstract Class but it is Not Good Programming Practice
(This is Like requesting IAS Officer for sweeping Activity)

 While extending X we can’t extend any Other Class.
 While implementing Interface we can extend any Other Class and Hence we won’t

Miss any Inheritance Benefit.

 In the Case Object Creation is Costly.
 Test t = new Test(); 2 Mins

 In the Case Object Creation is Not Costly.
 Test t = new Test(); 2 Sec

 Hence if everything is Abstract Highly Recommended to Use Interface but Not
Abstract Class.

 If we are talking About Implementation of Course Partial Implementation then Only
we should go for Abstract Class.

abstract class Person {
 String name;
 int age;
 Person(String name, int age) {
 this.name = name;
 this.age = age; Current Child Class Object
 }
}

abstract class X
{

}
class Test extends X {}

interface X
{

}
class Test implements X {}

http://www.durgasoft.com

JAVA Means DURGA SIR

199 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

Which of the following are Valid?

1) The Purpose of Constructor is to Create an Object.

2) The Purpose of Constructor is to Initialize an Object but Not to Create Object. √

3) Once Constructor completes then Only Object Creation completes.

4) First Object will be Created and then Constructor will be executed. √

5) The Purpose of new Key Word is to Create Object and the Purpose of
Constructor is to Initialize that Object. √

6) We can’t Create Object for Abstract Class Directly but Indirectly we can Create.

7) Whenever we are creating Child Class Object Automatically Parent Class Object

will be created Internally.

8) Whenever we are creating Child Class Object Automatically Abstract Class
Constructor will be executed. √

9) Whenever we are creating Child Class Object Automatically Parent Object will
be Created.

10) Whenever we are creating Child Class Object Automatically Parent Constructor

will be executed but Parent Object won’t be Created. √

11) Either Directly OR Indirectly we can’t Create Object for Abstract Class and
Hence Constructor Concept is Not Applicable for Abstract Class.

12) Interface can contain Constructor.

http://www.durgasoft.com

JAVA Means DURGA SIR

200 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

JAVA Means DURGA SIR

201 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com

http://www.durgasoft.com

