
JAVA Means DURGA SIR 

152 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 
 

http://www.durgasoft.com


JAVA Means DURGA SIR 

153 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 

JVM Architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) Virtual Machine 
2) Types of Virtual Machines 
3) Basic JVM Architecture 

 
4) ClassLoader Sub Systm 

 Loading 
 Linking 
 Initialization 

 
5) Types of ClassLoaders 

 Boot Strap ClassLoader 
 Extension ClassLoader 
 Application ClassLoader 

 
6) How ClassLoader Works? 

 
7) Customized ClassLoader 

 Need of Customized ClassLoader 
 Pseudo Code to Define Customized 

ClassLoader 
 

8) Various Memory Areas of JVM 
 Method Area 
 Heap Area 
 Stack Memory 
 PC Registers Area 
 Native Method Stacks Area 

 
9) Importance of Runtime Class 

 
10) Program to Display Statistics of Heap Memory 

 MaxMemory 
 TotalMemory 
 FreeMemory 

 
11) How to Set Maximum and Minimum Heap Size 

 
12) Execution Engine 

 Interpreter 
 JIT Compiler 

 
13) Java Native Interface (JNI) 
14) Class File Structure 
 

http://www.durgasoft.com


JAVA Means DURGA SIR 

154 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

Virtual Machine: 
 
It is a Software Simulation of a Machine which can Perform Operations Like a  
Physical Machine. 
 

 
Types of Virtual Machines 
 
There are 2 Types of Virtual Machines 
 

1) Hardware Based OR System Based Virtual Machines 
2) Software Based OR Application Based OR Process Based Virtual Machines 

 
1) Hardware Based OR System Based Virtual Machines 
 
It Provides Several Logical Systems on the Same Computer with Strong Isolation from Each 
Other.  
Examples: 

1) KVM (Kernel Based Virtual Machine) for Linux Systems 
2) VMware (Virtual Machine ware) 
3) Xen 
4) Cloud Computing 

The main advantage of Hard-ware based Virtual Machines is for effective utilization of hard-
ware resources. 
 
2) Software Based OR Application Based OR Process Based Virtual Machines 
 
These Virtual Machines  Acts as Runtime Engines to Run a Particular Programming Language 
Application. 
 
Examples: 

1) JVM Acts as Runtime Engine to Run Java Applications 
2) PVM (Parrot VM) Acts as Runtime Engine to Run Scripting Languages Like PERL. 
3) CLR (Common Language Runtime) Acts as Runtime Engine to Run .Net Based 

Applications. 
 
 
JVM 

 JVM is the Part of JRE. 
 JVM is Responsible to Load and Run Java Applications. 

 
 
 
 
 

http://www.durgasoft.com


JAVA Means DURGA SIR 

155 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 
Basic JVM Architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Execution 
Engine 

ClassLoader 
Sub System 

Method 
Area 

Heap 
Area 

Stack 
Area 

PC 
Registers 

Native 
Method 
Stacks 

Various Memory  
Areads of JVMe Data 

Native 
Method 
Interface

Native 
Method 
Libraries 

Class Files 

 
 
 

 
OS 

Native 

Method 

Libraries 

http://www.durgasoft.com


JAVA Means DURGA SIR 

156 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 

ClassLoader Sub System: 
 
ClassLoader Sub System is Responsible for the following 3 Activities. 

1) Loading 
2) Linking 

 Verification 
 Preparation 
 Resolution 

3) Initialization 
 

1) Loading: 
 

 Loading Means Reading Class Files and Store Corresponding Binary Data in Method Area.  
 For Each Class File JVM will Store the following Information in Method Area. 

1) Fully Qualified Name of the Loaded Class OR Interface ORenum. 
2) Fully Qualified Name of its Immediate Parent Class. 
3) Whether .class File is related to Class OR Interface OR enum. 
4) The Modifiers Information 
5) Variables OR Fields Information 
6) Methods Information 
7) Constant Pool Information and so on. 

 
 After loading .class File Immediately JVM will Creates an Object of the Type class Class to 

Represent Class Level  Binary Information on the Heap Memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Class Object can be used by Programmer to get Class Level Information Like Fully 
Qualified Name of the Class, Parent Name, Methods and Variables Information Etc. 

Heap Area 

Student.class 
Information  

Customer.class 
Information  

 

classClass Object for  
Student.class 

classClass Object for  
Customer.class 

 
     Used  
       By 
Programmer 

Method Area 

Student.class 

Customer.class 

Student s = new Student(); 
Class c = s.getClass(); 

Customer c = new Customer(); 
Class c1 = c.getClass(); 

http://www.durgasoft.com


JAVA Means DURGA SIR 

157 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

Program to print methods and variables information by using Class object: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In the Above Example by using Student class Class Object we can get its Methods and Variable 
Information. 
 
Note: For Every loaded .class file Only One Class Object will be Created, even though we are 
using Class Multiple Times in Our Application. 
 
 
 
 
 

importjava.lang.reflect.*; 
class Student { 
 private String name; 
 privateintrollNo; 
 public String getName() { 
 return name; 
 } 
 public void setRollNo(introllNo) { 
 this.rollNo = rollNo; 
 } 
} 
class Test1 { 
public static void main(String args[]) { 
 Student s = new Student(); 
 Class c = s.getClass(); 
 System.out.println(c.getName());  
 Method[] m = c.getDeclaredMethods(); 
 for (int i=0; i<m.length; i++) 
System.out.println(m[i]);  
 Field[] f = c.getDeclaredFields(); 
 for (int i=0; i<f.length; i++) 
System.out.println(f[i]); 
} 
} 

Student 
public void Student.setRollNo(int) 
publicjava.lang.StringStudent.getName() 
privatejava.lang.String Student.name 
privateintStudent.rollNo 

class Test2 { 
public static void main(String args[]) { 
             Student s1 = new Student(); 
             Student s2 = new Student(); 
             Class c1 = s1.getClass(); 
             Class c2 = s2.getClass(); 

http://www.durgasoft.com


JAVA Means DURGA SIR 

158 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

2) Linking: 
 

      Linking Consists of 3 Activities  
1) Verification 
2) Preparation 
3) Resolution 

 
 
Verification: 
 It is the Process of ensuring that Binary Representation of a Class is Structurally Correct 

OR Not.  
 That is JVM will Check whether .class File generated by Valid Compiler OR Not.i.ewhether 

.class File is Properly Formatted OR Not.  
 Internally Byte Code Verifier which is Part of ClassLoader Sub System is Responsible for 

this Activity.  
 If Verification Fails then we will get Runtime Exception Saying java.lang.VerifyError. 
 
 

 
 
Preparation: 
 
In this Phase JVM will Allocate Memory for the Class Level Static Variables and  
Assign DefaultValues (But Not Original Values). 
 
Note:Original Values will be assignedin Initialization Phase. 
 
Resolution: 
 
 It is the Process of Replaced Symbolic References used by the Loaded Type with Original 

References. 
 

 Symbolic References are Resolved into Direct References by searching through Method 
Area to Locate the Referenced Entity. 

 
  
 
 
 
 
 
 

http://www.durgasoft.com


JAVA Means DURGA SIR 

159 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 
 
 
 
 
 
 
 
 For the Above Class, ClassLoadersub system Loads Test.class, String.class,Student.class, 

andObject.class.  
 The Names of these Class Names are stored in Constant Pool of Test Class. 
 In Resolution Phase these Names are Replaced with Actual References from Method Area. 
 
 
 

 
 
3) Initialization: 
In this Phase All Static Variables will be assigned with  Original Values and Static Blocks will 
be executed from fromtop to bottom and from Parent to Child. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: While Loading, Linking and Initialization if any Error Occurs then we will get  

 Test.class 
 String.class 
 Student.class 
 Object.class 

class Test { 
public static void main(String[] args) {
 String s = new String("Durga"); 
 Student s1 = new Student(); 
} 
} 

Initialization Loading 

Verification 

Preparation 

Resolution 

Linking 

Loading of a Java Class 

http://www.durgasoft.com


JAVA Means DURGA SIR 

160 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

Runtime Exception Saying java.lang.LinkageError. Of course VerifyError is child class of 
LinkageError only. 
 
 
Types of ClassLoaders: 
 
Every ClassLoader Sub System contains the following 3 ClassLoaders. 
 

1) BootstrapClassLoader OR PrimordialClassLoader 
2) ExtensionClassLoader 
3) ApplicationClassLoader OR SystemClassLoader 

 
BootstrapClassLoader 
 
 This ClassLoader is Responsible to load classes from jdk\jre\lib folder.  
 All core java API classes present in rt.jar which is present in this location only. Hence all 

API classes (like String, StringBufferetc) will be loaded by Bootstrap class Loader only. 

 
 

 Location: 
 

 
 
 
 
 
 

 
 This Location is Called BootstrapClassPath. 
 That is BootstrapClassLoader is Responsible to Load Classes fromBootstrapClassPath. 
 BootstrapClassLoader is by Default Available with the JVM. 
 It is implemented in Native Languages Like C and C++. 
 
 
 
Extension ClassLoader: 
 
 It is the Child of Bootstrap ClassLoader.  
 ThisClassLoader is Responsible to Load Classes from Extension Class Path. 
Location:jdk\jre\lib\ext 

JDK 

JRE 

Lib 
*.jar 
(rt.jar) 

http://www.durgasoft.com


JAVA Means DURGA SIR 

161 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 
 
 
 
 
 
 
 
 
 This ClassLoader is implemented in Java and the corresponding .class File Name is 
sun.misc.Launcher$ExtClassLoader.class 
 
Application ClassLoader OR System ClassLoader: 
 
 It is the Child of Extension ClassLoader.  
 This ClassLoader is Responsible to Load Classes from Application Class Path (Current 

Working Directory). 
 It Internally Uses Environment Variable Class Path. 
 Application ClassLoader is implemented in Java and the corresponding .class File Name 

issun.misc.Launcher$appClassLoader.class 
 

 
 
 
 
 
 
 
 
 
 

 
How Java ClassLoader Works? 
 
 ClassLoader follows Delegation Hierarchy Principle. 
 Whenever JVM Come Across a Particular Class, first  it will Check whether the 

corresponding Class is Already Loaded OR Not. 
 If it is Already Loaded in Method Area then JVM will Use that Loaded Class. 
 If it is Not Already Loaded then JVM Requests ClassLoaderSub System to Load that 

Particular Class. 
 Then ClassLoaderSub System Handovers the Request to ApplicationClassLoader. 
 ApplicationClassLoader Delegates that Request to ExtensionClassLoader and  
ExtenstionClassLoader in-turn Delegates that Request to BootstrapClassLoader. 
 BootstrapClassLoader Searches in Bootstrap Class Path for the required .class File 

(jdk/jre/lib) 

Application ClassLoader 

Extension ClassLoader 

Bootstrap ClassLoader 

jdk
DK jre 

lib 
ext 

*.class 

http://www.durgasoft.com


JAVA Means DURGA SIR 

162 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 If the required .class is Available, then it will be Loaded. Otherwise BootstrapClassLoader 
Delegates that Request to ExtensionClassLoader. 

 ExtensionClassLoader will Search in Extension Class Path (jdk/jre/lib/ext). If the required 
.class File is Available then it will be Loaded, Otherwise it Delegates that 

      Request to ApplicationClassLoader. 
 ApplicationClassLoader will Search in Application Class Path (Current Working  
Directory). If the specified .class is Already Available, then it will be Loaded.  
      Otherwise we will get Runtime Exception Saying ClassNotFoundExceptionOR 
NoClassDefFoundError. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Bootstrap ClassLoader 

ExtensionClassLoader 

ApplicationClassLoader 

Bootstrap Class Path 
(%JAVA_HOME%\jre\lib\rt.jar) 

        Extension Class Path 
   (%JAVA_HOME\jre\lib\ext) 

          Application Class Path 
(Environment Variable Class Path) 

ClassLoader 
Sub System 

Request 

Delegates 

Delegates 

Searches  
       In 

Searches  
       In 

Searches  
       In 

http://www.durgasoft.com


JAVA Means DURGA SIR 

163 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 

 
Example: 
 
 
 
 
 
 
 
 
 
 
 For String Class: From Bootstrap Class Path by Bootstrap ClassLoader Output is null 
 
 For Student Class: From Extension Class Path by Extension ClassLoader Output is  

sun.misc.Launcher$extClassLoader@1234 
 
 For Test Class:From Application Class Path by Application ClassLoader Output is  

sun.misc.Launcher$appClassLoader@3456 
 
Note: Assume that Student.class Present in Both Extension Class Path and Application Class 
Path and Test.class Present in Only in Application Class Path. 
Note: 
 Bootstrap ClassLoader is Not Java Object. Hence we are getting null in the 1st Case but 

Extension ClassLoader and Application ClassLoader are Java Objects and Hence we get 
Proper Output in remaining 2 Cases. 

ClassName@HexaDecimal.String_of_Hashcode 
 ClassLoader Subsystem will give Highest Priority for Bootstrap Class Path and then 

Extension Class followed by Application Class Path.  
 
What is the Need of Customized ClassLoader? 
 
 Default ClassLoader will load .class Files Only Once Eventhough we are using  

Multiple Times that Class in Our Program. 
 After loading .class File if it is modified Outside, then Default ClassLoaderwon't Load 

Updated Version of Class File on Fly (Dynamically). Because .class File already there in 
Method Area. 

 We can Resolve this Problem by defining Our Own Customized ClassLoader. 
 The Main Advantage of Customized ClassLoader is we can Control Class loading 

Mechanism Based on Our Requirement.  
 For Example we can Load Class File Separately Every Time. So that Updated Version 

Available to Our Program. 
 
 
 
 
 
 
 
 
 
 
 

class Test { 
 public static void main(String[] args) { 
   System.out.println(String.class.getClassLoader()); 
   System.out.println(Student.class.getClassLoader()); 
   System.out.println(Test.class.getClassLoader()); 
 } 
} 

Stuedent s1 = new Student(); 
     : 
     : 
     : 

Stuedent s10 = new Student(); 
       : 
       : 
       : 

Stuedentsn = new Student(); 

       Load 
Student.class 

Use 

Use 

Use 

Default Class Loader 

Stuedent s = new Student(); 
    : 
    : 

Stuedent s = new Student(); 

         Load 
Student.class 

Customized Class Loader 

http://www.durgasoft.com
mailto:ClassName@HexaDecimal.String_of_Hashcode


JAVA Means DURGA SIR 

164 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 
How to Define Our Own ClassLoader? 
 
We can Define Our Own Customized ClassLoader by extending java.langClassLoader Class. 
 

Pseudo Code to Define Customized Class Loader 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What is the Purpose of java.lang.ClassLoader Class? 
 
 This Class Act as Base Class for designing Our Own Customized ClassLoaders. 
 Hence Every Customized ClassLoader Class should extendsjava.lang.ClassLoader either 

Directly OR Indirectly. 
 
Various Memory Areas of JVM: 
 
 Whole Loading and Running a Java Program JVM required Memory to Store Several 

Things Like Byte Code, Objects, Variables, Etc. 

public class CustomClassLoader extends ClassLoader{  
 public Class loadClass(String name) throws ClassNotFoundException{ 
  //Rad and Written Updated Class  
   --- 
   --- 
   ---   
 } 
} 
classCustomClassLoaderTest{ 
 public static void main(String[] args){ 
  Dog d = new Dog(); 
  . 
  . 
  . 
  CustomClassLoader c = new CustomClassLoader(); 
  c.loadClass("Dog"); 
  . 
  . 
  c.loadClass("Dog"); 
 } 
} 
 

Loaded By Default 
ClassLoader 

Loaded By 
CusomizedClassLoade
r for Updated Version 

http://www.durgasoft.com


JAVA Means DURGA SIR 

165 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 

 Total JVM Memory organized in the following 5 Categories: 
1) Method Area 
2) Heap Area OR Heap Memory 
3) Java Stacks Area 
4) PC Registers Area 
5) Native Method Stacks Area 

 
1) Method Area: 

 
 Method Area will be Created at the Time of JVM Start- Up. 
 It will be Shared by All Threads (Global Memory). 
 This Memory Area Need Not be Continuous. 
 Method area shows runtime constant pool. 
 Total  Class Level Binary Information including Static Variables Stored in Method 

Area. 
 
 
 
 
 
 
 
 
 
 
 
 
   
2) Heap Area: 

 
 Programmer Point of View Heap Area is Consider as Important Memory Area. 
 Heap Area will be Created at the Time of JVM Start- Up. 
 Heap Areacan be accessed by All Threads (Global OR Sharable Memory). 
 Heap Area Nee Not be Continuous. 
 All Objects and corresponding Instance Variables will be stored in the 

Heap Area. 
 Every Array in Java is an Object and Hence Arrays Also will be stored in Heap 

Memory Only. 
 
 
 
 
 
 
 
 
 
 
 
 
Program to Display Heap Memory Statistics 
 
 A Java Application can Communicate with the JVM by using Runtime Object. 

1) Class Data 2) Class Data 

3) Class Data 4) Class Data 

5) Class Data 

Method Area 

Heap Area 

Object Data Object Data 

Object Data Object Data 

Object Data 

http://www.durgasoft.com


JAVA Means DURGA SIR 

166 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 Runtime Class Present in java.lang Package and it is a Singleton Class. 
 We can Create Runtime Object by using 

Runtime r = Runtime.getRuntime(); 
 Once we got Runtime Object we can Call the following Methods on that Object. 

 
1) maxMemory(): Returns Number of Bytes of Max Memory allocated to the Heap. 
 
2) totalMemory(): Returns Number of Bytes of Total (Initial) Memory allocated to the Heap. 
 
3) freeMemory(): Returns Number of Bytes of Free Memory Present in Heap. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How to Set Maximum and Minimum Heap Size? 
 
 Heap Memory Size is Finite, Based on Our Requirement we can IncreaseORDecrease Heap 

Size. 
 The Default Heap Size is 64. 
 We can Use the following Flags with Java Command. 

classHeapDemo { 
public static void main(String[] args) { 
 longmb = 1024*1024; 
 Runtime r = Runtime.getRuntime(); 
 System.out.println("Max Memory: "+r.maxMemory()/mb); 
 System.out.println("Total Memory: "+r.totalMemory()/mb); 
 System.out.println("Free Memory: "+r.freeMemory()/mb); 
 System.out.println("Consumed memory:"+(r.totalMemory()-r.freeMemory())/mb); 
} 
} 

Max Memory: 253440 
Total Memory: 15872 
Free Memory: 15582 
Consumed memory:289 

Output in Terms of Bytes 

Max Memory: 247 
Total Memory: 15 
Free Memory: 15 
Consumed memory:0 

Output in Terms of MB’s 

1 KB = 1024 Bytes 
1MB = (1024*1024) Bytes 

http://www.durgasoft.com


JAVA Means DURGA SIR 

167 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 

 
 -Xmx:  To Set Maximum Heap Size.  
Eg: java -Xmx128m HeapDemo 
           This Command will be Set as Maximum Heap Size as 128mb. 
 
 
 
 
 
 
 
 -Xms : To Set Minimum Heap Size. 

Eg:java -Xms64m HeapDemo 
           This Command Set Minimum Heap Size as 64 mb. 
 
 
 
 
 
 
 
 
 
 
 
 java –Xmx128m –Xms64m HeapDemo 
 
 
 
 
 
 
 
 
3) Stack Memory: 

 
 For Every Thread JVM will Create a Separate Runtime Stack. 
 Runtime Stack will be Created Automatically at the Time of Thread Creation. 
 All Method Calls and corresponding Local Variables, Intermediate Results will be 

stored in the Stack. 
 For Every Method Call a Separate Entry will be Added to the Stack and that Entry is 

Called Stack Frame OR Activation Record. 
 After completing that Method Call the corresponding Entry from the Stack will 

beRemoved.  
 After completing All Method Calls, Just Before terminating the Thread,the Runtime 

Stack will be destroyed by the JVM. 
 The Data stored in the Stack can be accessed by Only the corresponding Thread and it 

is Not Available to Other Threads. 
 

 
 
 
 
 

Max Memory: 123 
Total Memory: 14 
Free Memory: 14 
Consumed Memory: 0 

Max Memory: 232 
Total Memory: 61 
Free Memory: 61 
Consumed Memory: 0 

Max Memory: 123 
Total Memory: 61 
Free Memory: 61 
Consumed Memory: 0 

 t1 t2 tn 

--------------------
- 

Stack Frame 

http://www.durgasoft.com


JAVA Means DURGA SIR 

168 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 
 
 
 

Stack Frame Structure: 
 

Each Stack Frame contains 3 Parts 
 
  
 
 
 
 
 
 
 

 
 
 Local Variable Array: 
 

 It Contains All Parameters and Local Variables of the Method. 
 Each Slot in the Array is of 4 Bytes. 
 Values of Type int, float, and Referenced Variables Occupy One Entry in that Array. 
 Values of Type long and double Occupy 2 Consecutive Entries in Array. 
 byte, short and char Values will be converted in to int Type before storing and  
      Occupy One Slot. 
 But the Way of storing boolean Values is varied from JVM to JVM. But Most of the 

JVM's follow One Entry OR One Slot for boolean Values. 
 

Eg:public void m1(inti,long l, Object o, byte b, double d){} 
 
 
 
 
 
 
 
 
 
 
 Operand Stack: 

Local Variable Array 

    Operand Stack 

       Frame Data 

Stack Frame 

double 

int 

long 

Object float 

0              1              2             3             4            5            6 
Local Variable Array 

http://www.durgasoft.com


JAVA Means DURGA SIR 

169 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 
 JVM Uses Operand Stack as Work Space. 
 Some Instructions can Push the Values to the Operand Stack and Some Instructions can 

Pop the Values from Operand Stack and Perform required Operations and Store Result 
Once Again Back to the Operand Stack. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Frame Data: 

 
 Frame Data contains All Symbolic References (Constant Pool) related to that  

Method. 
 It also contains a Reference to Exception Table which Provides corresponding catch 

Block Information in the Case of Exceptions. 
 
4) PC (Program Counter) Registers Area: 

 
 For Every Thread a Separate PC Register will be Created at the Time of Thread  

Creation. 
 PC Registers contains Address of Current executing Instruction. 
 Once Instruction Execution Completes Automatically PC Register will be  

incremented to Hold Address of Next Instruction. 
 
5) Native Method Stacks: 

 
 For Every Thread JVM will Create a Separate Native Method Stack. 
 All Native Method Calls invoked by the Thread will be stored in the corresponding 

Native Method Stack.  
Note: 
 
 Method Area, Heap Area and Stack Area are considered as Major Memory Areas with 

Respect to Programmers Point of View. 
 

 
i – load 0 
i – load 1 
i – add 
i - store 
 

Program 

 0 

 1 

2 

100 
 
80 

After i-load 0 

 100 
 

 100 
 

 0 

 1 

2 

After i-load 1 

100 
 
80 

80 
 180 
 

 0 

 1 

2 

After i-add 

100 
 
80 

 
 
 

 0 

 1 

2 

After i-store 

100 
 
80 

 

180 

Operand   
     Stack 

 

 0 

 1 

2 

100 
 
80 

 Before Storing 
 

 Local Variable 
         Array 

http://www.durgasoft.com


JAVA Means DURGA SIR 

170 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 

 Method Area and Heap Area are for JVM. Whereas Stack Area, PC Registers Area and 
Native Method Stack Area are for Thread. That is  

 One Separate Heap for Every JVM 
 One Separate Method Area for Every JVM 
 One Separate Stack for Every Thread 
 One Separate PC Register for Every Thread 
 One Separate Native Method Stack for Every Thread 

 
 Static Variables will be stored in Method Area whereas Instance Variables will be stored in 

Heap Area and Local Variables will be stored in Stack Area. 
 
Execution Engine: 
 
 This is the Central Component of JVM.  
 Execution Engine is Responsible to Execute Java Class Files. 
 Execution Engine contains 2 Components for executing Java Classes. 

 Interpreter 
 JIT Compiler 

 
Interpreter: 
 
 It is Responsible to Read Byte Code and Interpret (Convert) into Machine Code (Native 

Code) and Execute that Machine Code Line by Line. 
 The Problem with Interpreter is it Interpreters Every Time Even the Same Method 

Multiple Times. Which Reduces Performance of the System. 
 To Overcome this Problem SUN People Introduced JIT Compilers in 1.1 Version. 
 
JIT Compiler: 
 
 The Main Purpose of JIT Compiler is to Improve Performance. 
 Internally JIT Compiler Maintains a Separate Count for Every Method whenever JVM 

Come Across any Method Call. 
 First that Method will be interpreted normally by the Interpreter and JIT Compiler 

Increments the corresponding Count Variable. 
 This Process will be continued for Every Method. 
 Once if any Method Count Reaches Threshold (The Starting Point for a New State) Value, 

then JIT Compiler Identifies that Method Repeatedly used Method (HOT SPOT).  
 Immediately JIT Compiler Compiles that Method and Generates the corresponding Native 

Code. Next Time JVM Come Across that Method Call then JVM Directly Use Native Code 
and Executes it Instead of interpreting Once Again. So that Performance of the System will 
be Improved. 

 The Threshold Count Value varied from JVM to JVM. 
 Some Advanced JIT Compilers will Re-compile generated Native Code if Count Reaches 

Threshold Value Second Time, So that More optimized Machine Code                will be 
generated. 

 Profiler which is the Part of JIT Compiler is Responsible to IdentifY HOT SPOTS. 
Note: 
 
 JVM Interprets Total Program Line by Line at least Once. 
 JIT Compilation is Applicable Only for Repeatedly invoked Methods. But Not for Every 

Method. 
 

http://www.durgasoft.com


JAVA Means DURGA SIR 

171 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Java Native Interface (JNI): 
 
JNI Acts as Bridge (Mediator) between Java Method Calls and corresponding Native  
Libraries. 
Eg:hashCode() 
 
 
 
 
 

 

Execution Engine 

     Interpreter 
 

JIT Compiler 

Intermediate Code 
       Generator 

      Code Optimizer 
 

     Target Code 
       Generator 

Target Machine   
           Code 

Profiler 

Garbage 
Collector 

http://www.durgasoft.com


JAVA Means DURGA SIR 

172 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 

 
Class File Structure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1) Magic _Number 

 
 The 1st 4 Bytes of Class File is Magic Number. 
 This is a Predefined Value to Identify Java Class File. 
 This Value should be 0XCAFEBABE. 
 JVM will Use this Magic Number to Identify whether the Class File is Valid OR Not i.e. 

whether it is generated by Valid Compiler OR Not. 
 
Note: Whenever we are executing a Java Class if JVM Unable to Find Valid Magic Number 
then we get RuntimeException Saying ClassFormatError: incompatible magic value. 

 
2) Minor_Version and Major _Version 

 
 Minor and Major Versions Represents Class File Version. 
 JVM will Use these Versions to Identify which Version of Compiler Generates Current 

.class File 
 
 
 
 
 
Note: 
 
 Higher Version JVM can Always Run Lower Version Class Files But Lower Version JVM 

can’t Run Class Files generated by Higher Version Compiler. 
 Whenever we are trying to Execute Higher Version Compiler generated Class File with 

Lower Version JVM we will get RuntimeException Saying 
java.lang.UnsupportedClassVersionError: Employee (Unsupported major.minor version 
51.0) 

class File { 
 Magic_Number; 
 Minor_Version; 
 Major_Version; 
 Constant_Pool_Cont; 
 Constant_Pool[]; 
 access_Flash; 
this_class; 
 super_class; 
 interface_count; 
 interface[]; 
 fields_count; 
 fields[]; 
 Methods_count; 
 methods[]; 
 attributes_count; 
 attributes[]; 
} 

M.m 
 
Major Version            Minor Version 

1.4 V  1.5 V  1.6 V  1.7 V 
 
48.0    49.0    50.0   51.0 

http://www.durgasoft.com


JAVA Means DURGA SIR 

173 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 
3) Constant_Pool_Count:It Represents the Number of Constants Present in Constant Table 

of the Class. 
 
4) Constant_Pool[]:It Represents Information About Constants Present in Constant Table of 

the Class. 
 
5) Access_Flash:It Shows the Modifiers which are declared for the Current Class OR 

Interface. 
 

6) this_class:It Represents the Name of the Class OR Interface defined by Class File. 
 

7) super_class:It Represents the Name of the Super Class Represented by Class File. 
 
 

 

 

 
 
 

 
8) interface_count:It Represents Number of Interfaces implemented by Current Class File. 
 
9) interface[]:It Represents the Names of Interfaces which are implemented by Current Class 

File. 
 
10 )fields_count:It Represents Number of Fields Present in the Current Class File. 
 
11 )fields[]:It Provides Names of All Fields Present in the Current Class File. 
 
12 )method_count:It Represents Number of Methods Present in the Current Class  
                                   File. 
 
13 )methods[]:It Returns the Name of the Method Present in the Current Class File. 

Test.class 

this_class: Test 
super_class: java.lang.Object 

http://www.durgasoft.com


JAVA Means DURGA SIR 

174 DURGASOFT, # 202,2ndFloor,HUDA Maitrivanam,Ameerpet, Hyderabad - 500038,  
 040 – 64 51 27 86, 80 96 96 96 96, 9246212143 | www.durgasoft.com 

 

 
14 )attributes_count:It Represents Number ofAttributes Present in the Current  
Class File. 
 
15 )attributes[]: It Provides Information About All Attributes Present in the Current   
Class File. 
 
 
 

Java Source File 
    (.java File) 

Java Compiler 
     (javac) 

Java Class File 
(.class) Byte Code 

Bootstrap ClassLoader 

Extension ClassLoader 

Application ClassLoader 

Loading 

 

Preparation 

Verification 

Resolution 

 
 
 
Initialization 

Linking 
ClassLoader Sub System 

VARIOUS MEMORY AREAS OF JVM 

 

 Class  
Data 

Class  
Data 

Class  
Data 

Class  
Data 

Method Area 
 Object  
Data 

Object  
Data 

Object  
Data 

Object  
Data 

Heap Area Stack Memory 

 t1 t2 tn 

PC Registers  
      Area 

 PC Register 
     For t1 

PC Register 
     For tn 

:::::::::::::: 

Native Method  
   Stacks Area 

 t1 t2 tn 

Local Variable Array Frame Data 
Operand Stack 

Execution Engine 

Profiler 

Garbage 
Collector 

JIT Compiler 

Intermediate Code 
       Generator 

      Target Code 
 Generator 

Target Machine   
            Code 

Code Optimizer 

I 
N 
T 
E 
R 
P 
R 
E 
T 
E 
R 
 

 
 
 
 
Java 
Native 
Interface 

 
 
 

Native 
Method 
Libraries 

http://www.durgasoft.com

